BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   News from NMR blogs (http://www.bionmr.com/forum/news-nmr-blogs-47/)
-   -   Heteronuclear DNP of 1H and 19F nuclei using BDPA as a polarizing agent #DNPNMR (http://www.bionmr.com/forum/news-nmr-blogs-47/heteronuclear-dnp-1h-19f-nuclei-using-bdpa-polarizing-agent-dnpnmr-27381/)

nmrlearner 08-07-2020 08:10 PM

Heteronuclear DNP of 1H and 19F nuclei using BDPA as a polarizing agent #DNPNMR
 
From The DNP-NMR Blog:

Heteronuclear DNP of 1H and 19F nuclei using BDPA as a polarizing agent #DNPNMR

Gennaro, Antonio, Alexander Karabanov, Alexey Potapov, and Walter Köckenberger. “Heteronuclear DNP of 1H and 19F Nuclei Using BDPA as a Polarizing Agent.” Physical Chemistry Chemical Physics 22, no. 15 (2020): 7803–16.

https://doi.org/10.1039/D0CP00892C.


This work explores the dynamic nuclear polarization (DNP) of 1H and 19F nuclei in a sample of 25/75 (% v/v) fluorobenzene/toluene containing the radical 1,3-bisphenylene-2-phenylallyl radical (BDPA) as a polarizing agent. Previously, heteronuclear effects in DNP were studied by analysing the shapes of DNP spectra, or by observing cross-relaxation between nuclei of different types. In this work, we report a rather specific DNP spectrum, where 1H and 19F nuclei obtain polarizations of opposite signs upon microwave (MW) irradiation. In order to explain this observation, we introduce a novel mechanism called heteronuclear thermal mixing (hn-TM). Within this mechanism the spectra of opposite signs can then be explained due to the presence of four-spin systems, involving a pair of dipolar coupled electron spins and hyperfine coupled nuclear spins of 1H and 19F, such that a condition relating their Larmor frequencies |o1e o2e| E oH oF is satisfied. Under this condition, a strong mixing of electron and nuclear states takes place, enabling simultaneous four-spin flip-flops. Irradiation of electron spin transitions with MW followed by such four-spin flip-flops produces non-equilibrium populations of |aHbFi and |bHaFi states, thus leading to the enhancements of opposite signs for 1H and 19F. Signal enhancements, build-up times and DNP-spectra as a function of MW power and polarizing agent concentration, all provide additional support for assigning the observed DNP mechanism as hn-TM and distinguishing it from other possible mechanisms. We also develop a quantum mechanical model of hn-TM based on averaging of spin Hamiltonians. Simulations based on this model show very good qualitative agreement with experimental data. In addition, the system exhibits cross-relaxation between 1H and 19F induced by the presence of BDPA, which was detected by measuring the 19F signal build-up upon saturation of 1H nuclei with a train of radio-frequency pulses. We demonstrate that such cross-relaxation most likely originates due to the same electron and nuclear states mixing in the four-spin systems.




Go to The DNP-NMR Blog for more info.


All times are GMT. The time now is 08:19 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013