BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-07-2020, 08:10 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Gadolinium Effect at High-Magnetic-Field DNP: 70% 13C Polarization of [U-13C] Glucose Using Trityl #DNPNMR

From The DNP-NMR Blog:

Gadolinium Effect at High-Magnetic-Field DNP: 70% 13C Polarization of [U-13C] Glucose Using Trityl #DNPNMR

Capozzi, Andrea, Saket Patel, W. Thomas Wenckebach, Magnus Karlsson, Mathilde H. Lerche, and Jan Henrik Ardenkjær-Larsen. “Gadolinium Effect at High-Magnetic-Field DNP: 70% 13C Polarization of [U-13C] Glucose Using Trityl.” The Journal of Physical Chemistry Letters 10, no. 12 (June 20, 2019): 3420–25.

https://doi.org/10.1021/acs.jpclett.9b01306.

We show that the trityl electron spin resonance (ESR) features, crucial for an efficient dynamic nuclear polarization (DNP) process, are sample-composition-dependent. Working at 6.7 T and 1.1 K with a generally applicable DNP sample solvent mixture such as water/glycerol plus trityl, the addition of Gd3+ leads to a dramatic increase in [U-13C] glucose polarization from 37 ± 4% to 69 ± 3%. This is the highest value reported to date and is comparable to what can be achieved on pyruvic acid. Moreover, performing ESR measurements under actual DNP conditions, we provide experimental evidence that gadolinium doping not only shortens the trityl electron spin-lattice relaxation time but also modifies the radical g-tensor. The latter yielded a considerable narrowing of the ESR spectrum line width. Finally, in the frame of the spin temperature theory, we discuss how these two phenomena affect the DNP performance.





Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning #DNPNMR
From The DNP-NMR Blog: Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning #DNPNMR Jaudzems, Kristaps, Andrea Bertarello, Sachin R. Chaudhari, Andrea Pica, Diane Cala-De Paepe, Emeline Barbet-Massin, Andrew J. Pell, et al. “Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning.” Angewandte Chemie 0 (2018). https://doi.org/10.1002/ange.201801016.
nmrlearner News from NMR blogs 0 07-06-2018 09:40 AM
Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field #DNPNMR
From The DNP-NMR Blog: Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Thurber, K.R., et al., Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field. J Magn Reson, 2018. 289: p. 122-131.
nmrlearner News from NMR blogs 0 05-03-2018 03:56 AM
Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR
From The DNP-NMR Blog: Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Järvinen, J., et al., Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature. Appl. Magn. Reson., 2017. 48(5): p. 473-483. http://dx.doi.org/10.1007/s00723-017-0875-z
nmrlearner News from NMR blogs 0 07-17-2017 04:07 PM
Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kaushik, M., et al., Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2017. 56(15): p. 4295-4299. https://www.ncbi.nlm.nih.gov/pubmed/28319293
nmrlearner News from NMR blogs 0 07-15-2017 05:05 PM
Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR
From The DNP-NMR Blog: Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Järvinen, J., et al., Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature. Appl. Magn. Reson., 2017. 48(5): p. 473-483. http://dx.doi.org/10.1007/s00723-017-0875-z
nmrlearner News from NMR blogs 0 05-02-2017 01:52 AM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643. http://dx.doi.org/10.1039/C6CP90249A
nmrlearner News from NMR blogs 0 12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204. http://dx.doi.org/10.1039/C6CP04621E
nmrlearner News from NMR blogs 0 11-21-2016 11:02 PM
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
From The DNP-NMR Blog: Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin Walker, S.A., et al., Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Phys. Chem. Chem. Phys., 2013. http://dx.doi.org/10.1039/C3CP51628H
nmrlearner News from NMR blogs 0 09-06-2013 06:52 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:03 PM.


Map