BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-08-2015, 11:11 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Electron Spin–Lattice Relaxation Mechanisms of Nitroxyl Radicals in Ionic Liquids and Conventional Organic Liquids: Temperature Dependence of a Thermally Activated Process

From The DNP-NMR Blog:

Electron Spin–Lattice Relaxation Mechanisms of Nitroxyl Radicals in Ionic Liquids and Conventional Organic Liquids: Temperature Dependence of a Thermally Activated Process


A detailed understanding of the electron-spin relaxation mechanisms in polarizing agents used for DMP-NMR spectroscopy is crucial for the understanding of the DNP process and to optimize polarizing agents for different DNP applications. The entire study was performed at X-Band frequencies (9 GHz, 14 MHz 1H) and provides many details about the relaxation behavior of nitroxide radicals - important either for low-field ODNP experiments but also very relavant for high-field solution-state DNP experiments.




Kundu, K., et al., Electron Spin–Lattice Relaxation Mechanisms of Nitroxyl Radicals in Ionic Liquids and Conventional Organic Liquids: Temperature Dependence of a Thermally Activated Process. The Journal of Physical Chemistry B, 2015. 119(12): p. 4501-4511.


http://dx.doi.org/10.1021/acs.jpcb.5b00431


During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin?lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes?Einstein?Debye relation of temperature dependence in all solvents. By separating the contributions of g-anisotropy, A-anisotropy and spin-rotation interactions from the observed electron spin?lattice relaxation rates, the contribution of the thermally activated process was obtained and compared with its expression for the temperature dependence. Consistent values of various fitted parameters, used in the expression of the thermal process, have been found, and the applicability of the expression of the thermally activated process to describe the temperature dependence in liquid solutions has been vindicated. Moderate solvent dependence of the thermally activated process has also been observed. The rotational correlation times and the spin?lattice relaxation processes of nitroxyls in ionic liquids and in conventional organic liquids are shown to be explicable on a similar footing, requiring no special treatment for ionic liquids.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
From The DNP-NMR Blog: Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin Walker, S.A., et al., Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Phys. Chem. Chem. Phys., 2013. http://dx.doi.org/10.1039/C3CP51628H
nmrlearner News from NMR blogs 0 09-06-2013 06:52 PM
Temperature Dependence of Electron Spin Relaxation of 2,2-Diphenyl-1-Picrylhydrazyl in Polystyrene
From The DNP-NMR Blog: Temperature Dependence of Electron Spin Relaxation of 2,2-Diphenyl-1-Picrylhydrazyl in Polystyrene Meyer, V., S. Eaton, and G. Eaton, Temperature Dependence of Electron Spin Relaxation of 2,2-Diphenyl-1-Picrylhydrazyl in Polystyrene. Appl. Magn. Reson., 2013. 44(4): p. 509-517. http://dx.doi.org/10.1007/s00723-012-0417-7
nmrlearner News from NMR blogs 0 04-15-2013 10:32 PM
Effect of glassy modes on electron spin–lattice relaxation in solid ethanol
From the The DNP-NMR Blog: Effect of glassy modes on electron spin–lattice relaxation in solid ethanol Merunka, D., et al., Effect of glassy modes on electron spin–lattice relaxation in solid ethanol. J. Magn. Reson., 2013. 228(0): p. 50-58. http://www.ncbi.nlm.nih.gov/pubmed/23357426
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
[Question from NMRWiki Q&A forum] bulk water relaxation dependence on temperature
bulk water relaxation dependence on temperature Is liquid water's relaxation rate strongly dependent on temperature, and does anyone have a link to a good online article with the dependency equation?Thanks! Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 12-23-2011 10:21 AM
[NMR tweet] Nuclear Spin Relaxation in Liquids: Nuclear Spin Relaxation in LiquidsNuclear magnetic resonance (NMR) is wide... http://bit.ly/hDdW99
Nuclear Spin Relaxation in Liquids: Nuclear Spin Relaxation in LiquidsNuclear magnetic resonance (NMR) is wide... http://bit.ly/hDdW99 Published by booksvariety (BooksVariety.com) on 2010-12-04T23:02:54Z Source: Twitter
nmrlearner Twitter NMR 0 12-04-2010 11:36 PM
Post-Doc fellowship in NMR Methods to Study Ionic Solids/liquids - Univ. of Aveiro/Lisbon (Portugal)
Post-Doc fellowship in NMR Methods to Study Ionic Solids/liquids - Univ. of Aveiro/Lisbon (Portugal) A 1-year postdoctoral position is available starting from January 2011, (extendable for additional 12 months) to study the “solid structure” of ionic liquids (ILs) and ionic solids (ISs) with relevance to the pharmaceutical industry. The research will be centred in the use of NMR techniques in tandem with molecular modelling to study the physical chemistry of molecular interactions in ILs and ISs. The project will be performed at the NMR centres at the Universities of Aveiro (solid state...
nmrlearner Job marketplace 0 12-01-2010 08:36 PM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field. Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field. J Magn Reson B. 1994 May;104(1):11-25 Authors: Kuwata K, Brooks D, Yang H, Schleich T The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:28 PM.


Map