BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-19-2020, 06:10 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,169
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Room temperature optical nanodiamond hyperpolarizer: Physics, design, and operation #DNPNMR

From The DNP-NMR Blog:

Room temperature optical nanodiamond hyperpolarizer: Physics, design, and operation #DNPNMR

Ajoy, A., R. Nazaryan, E. Druga, K. Liu, A. Aguilar, B. Han, M. Gierth, et al. “Room Temperature Optical Nanodiamond Hyperpolarizer: Physics, Design, and Operation.” Review of Scientific Instruments 91, no. 2 (February 1, 2020): 023106.


https://doi.org/10.1063/1.5131655.


Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in nuclear magnetic resonance (NMR) and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical DNP methods require the use of cryogens, large magnetic fields, and high power microwave excitation, which are expensive and unwieldy. Nanodiamond particles, rich in Nitrogen-Vacancy (NV) centers, have attracted attention as alternative DNP agents because they can potentially be optically hyperpolarized at room temperature. Here, unraveling new physics underlying an optical DNP mechanism first introduced by Ajoy et al. [Sci. Adv. 4, eaar5492 (2018)], we report the realization of a miniature “optical nanodiamond hyperpolarizer,” where 13C nuclei within the diamond particles are hyperpolarized via the NV centers. The device occupies a compact footprint and operates at room temperature. Instrumental requirements are very modest: low polarizing fields, low optical and microwave irradiation powers, and convenient frequency ranges that enable miniaturization. We obtain the best reported optical 13C hyperpolarization in diamond particles exceeding 720 times of the thermal 7 T value (0.86% bulk polarization), corresponding to a ten-million-fold gain in averaging time to detect them by NMR. In addition, the hyperpolarization signal can be background-suppressed by over two-orders of magnitude, retained for multiple-minute long periods at low fields, and deployed efficiently even to 13C enriched particles. Besides applications in quantum sensing and bright-contrast MRI imaging, this work opens possibilities for low-cost room-temperature DNP platforms that relay the 13C polarization to liquids in contact with the high surface-area particles.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Nanodiamond as a New Hyperpolarizing Agent and Its 13C MRS #DNPNMR
From The DNP-NMR Blog: Nanodiamond as a New Hyperpolarizing Agent and Its 13C MRS #DNPNMR Dutta, Prasanta, Gary V. Martinez, and Robert J. Gillies. “Nanodiamond as a New Hyperpolarizing Agent and Its 13C MRS.” The Journal of Physical Chemistry Letters 5, no. 3 (February 6, 2014): 597–600. https://doi.org/10.1021/jz402659t
nmrlearner News from NMR blogs 0 06-07-2018 01:44 AM
Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance #DNPNMR
From The DNP-NMR Blog: Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Dey, A., A. Banerjee, and N. Chandrakumar, Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance. The Journal of Physical Chemistry B, 2017. 121(29): p. 7156-7162. https://www.ncbi.nlm.nih.gov/pubmed/28658577
nmrlearner News from NMR blogs 0 11-21-2017 03:50 AM
Hyperpolarized Nanodiamond Surfaces #DNPNMR
From The DNP-NMR Blog: Hyperpolarized Nanodiamond Surfaces #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Rej, E., et al., Hyperpolarized Nanodiamond Surfaces. J Am Chem Soc, 2017. 139(1): p. 193-199. https://www.ncbi.nlm.nih.gov/pubmed/28009158
nmrlearner News from NMR blogs 0 02-15-2017 03:40 PM
Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature
From The DNP-NMR Blog: Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature This is an incredible article. It shows the temperature dependence of the DNP enhancement over a wide temperature regime. Most importantly it shows that at room temperature still an enhancement of 15-20 can be achieved. Just a few years ago the common believe was that solid-state MAS-DNP experiments have to be performed at 90 K or below. This article clearly demonstrates that there is still so much room for improvements of DNP. I think the most exciting moments in DNP are...
nmrlearner News from NMR blogs 0 03-04-2016 10:23 PM
Room temperature hyperpolarization of nuclear spins in bulk
From The DNP-NMR Blog: Room temperature hyperpolarization of nuclear spins in bulk Tateishi, K., et al., Room temperature hyperpolarization of nuclear spins in bulk. Proc Natl Acad Sci U S A, 2014. 111(21): p. 7527-30. http://www.ncbi.nlm.nih.gov/pubmed/24821773
nmrlearner News from NMR blogs 0 08-19-2015 03:24 PM
Room temperature hyperpolarization of nuclear spins in bulk
From The DNP-NMR Blog: Room temperature hyperpolarization of nuclear spins in bulk Tateishi, K., et al., Room temperature hyperpolarization of nuclear spins in bulk. Proc. Nat. Aca. Sci. USA, 2014. 111(21): p. 7527-7530. http://www.pnas.org/content/111/21/7527.abstract Dynamic nuclear polarization (DNP), a means of transferring spin polarization from electrons to nuclei, can enhance the nuclear spin polarization (hence the NMR sensitivity) in bulk materials at most 660 times for 1H spins, using electron spins in thermal equilibrium as polarizing agents. By using electron spins...
nmrlearner News from NMR blogs 0 07-12-2014 04:28 AM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog: Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 317(0): p. 679-684. http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner News from NMR blogs 0 01-23-2014 01:37 AM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog: Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013(0). http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:30 PM.


Map