BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-12-2016, 05:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Trityl-based alkoxyamines as NMP controllers and spin-labels

From The DNP-NMR Blog:

Trityl-based alkoxyamines as NMP controllers and spin-labels

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Audran, G., et al., Trityl-based alkoxyamines as NMP controllers and spin-labels. Polym. Chem., 2016. 7(42): p. 6490-6499.


http://dx.doi.org/10.1039/C6PY01303A


Recently, new applications of trityl-nitroxide biradicals were proposed. In the present study, attachment of a trityl radical to alkoxyamines was performed for the first time. The rate constants kd of C-ON bond homolysis in these alkoxyamines were measured and found to be similar to those for alkoxyamines without a trityl moiety. The electron paramagnetic resonance (EPR) spectra of the products of alkoxyamine homolysis (trityl-TEMPO and trityl-SG1 biradicals) were recorded, and the corresponding exchange interactions were estimated. The decomposition of trityl-alkoxyamines showed more than an 80% yield of biradicals, meaning that the C-ON bond homolysis is the main reaction. The suitability of these labelled initiators/controllers for polymerisation was exemplified by means of a successful nitroxide-mediated polymerisation (NMP) of styrene. Thus, this is the first report of a spin-labelled alkoxyamine suitable for NMP.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Cross relaxation in nitroxide spin labels
From The DNP-NMR Blog: Cross relaxation in nitroxide spin labels p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Marsh, D., Cross relaxation in nitroxide spin labels. J Magn Reson, 2016. 272: p. 172-180. https://www.ncbi.nlm.nih.gov/pubmed/27717659
nmrlearner News from NMR blogs 0 11-25-2016 08:18 PM
Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals
From The DNP-NMR Blog: Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals Liu, Y., et al., Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals. J Am Chem Soc, 2013. 135(6): p. 2350-6. http://www.ncbi.nlm.nih.gov/pubmed/23320522
nmrlearner News from NMR blogs 0 03-03-2014 04:55 PM
Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR
From The DNP-NMR Blog: Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR This article does not describe any DNP-NMR experiments. However, in the light of biradicals as polarizing agents for DNP experiments it is still very interesting. Especially since trityl radicals have very narrow EPR lines and these biradicals could be more efficient to polarize low-gamma nuclei such as 13C, 29Si or 15N.
nmrlearner News from NMR blogs 0 01-08-2014 11:53 PM
Intermediate Dipolar Distances from Spin Labels
Intermediate Dipolar Distances from Spin Labels Publication date: Available online 16 November 2013 Source:Journal of Magnetic Resonance</br> Author(s): Derek Marsh</br> Methods for determining inter-spin distances between nitroxide spin labels from dipolar couplings in the intermediate range (r 12 ? 1.1-2 nm) by CW-EPR are addressed. For nitroxide powder patterns, the assumption of unlike spins is a better approximation than assuming strong coupling between like spins. Methods that determine the average splitting in dipolar deconvolutions yield the mean value ?...
nmrlearner Journal club 0 11-17-2013 07:00 AM
Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP
From The DNP-NMR Blog: Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP Lumata, L., et al., Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP. Phys. Chem. Chem. Phys., 2013. 15(24): p. 9800-9807. http://dx.doi.org/10.1039/C3CP50186H
nmrlearner News from NMR blogs 0 06-10-2013 05:30 PM
Conformational dynamics and distribution of nitroxide spin labels
Conformational dynamics and distribution of nitroxide spin labels Publication date: Available online 18 April 2013 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Gunnar Jeschke</br> Long-range distance measurements based on paramagnetic relaxation enhancement (PRE) in NMR, quantification of surface water dynamics near biomacromolecules by Overhauser dynamic nuclear polarization (DNP) and sensitivity enhancement by solid-state DNP all depend on introducing paramagnetic species into an otherwise diamagnetic NMR sample. The species can be...
nmrlearner Journal club 0 04-18-2013 10:12 PM
[NMR paper] Spin labels as a tool to identify and characterize protein-ligand interactions by NMR
Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. Related Articles Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. Chembiochem. 2002 Mar 1;3(2-3):167-73 Authors: Jahnke W NMR spectroscopy based discovery and optimization of lead compounds for a given molecular target requires the development of methods with maximum sensitivity and robustness. It is shown here that organic nitroxide radicals ("spin labels") can be used to boost the sensitivity...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] An NMR investigation of the conformational effect of nitroxide spin labels on Ala-ric
An NMR investigation of the conformational effect of nitroxide spin labels on Ala-rich helical peptides. Related Articles An NMR investigation of the conformational effect of nitroxide spin labels on Ala-rich helical peptides. J Magn Reson. 1998 Apr;131(2):248-53 Authors: Bolin KA, Hanson P, Wright SJ, Millhauser GL Nitroxide spin labels, in conjunction with electron spin resonance (ESR) experiments, are extensively employed to probe the structure and dynamics of biomolecules. One of the most ubiquitous spin labeling reagents is the...
nmrlearner Journal club 0 11-17-2010 11:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:49 AM.


Map