BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   News from NMR blogs (http://www.bionmr.com/forum/news-nmr-blogs-47/)
-   -   A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics (http://www.bionmr.com/forum/news-nmr-blogs-47/combined-epr-md-simulation-study-nitroxyl-spin-label-restricted-internal-mobility-sensitive-protein-dynamics-24325/)

nmrlearner 02-20-2017 03:39 PM

A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics
 
From The DNP-NMR Blog:

A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Oganesyan, V.S., et al., A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics. J. Magn. Reson., 2017. 274: p. 24-35.


www.sciencedirect.com/science/article/pii/S1090780716302270


EPR studies combined with fully atomistic Molecular Dynamics (MD) simulations and an MD-EPR simulation method provide evidence for intrinsic low rotameric mobility of a nitroxyl spin label, Rn, compared to the more widely employed label MTSL (R1). Both experimental and modelling results using two structurally different sites of attachment to Myoglobin show that the EPR spectra of Rn are more sensitive to the local protein environment than that of MTSL. This study reveals the potential of using the Rn spin label as a reporter of protein motions.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.


All times are GMT. The time now is 08:47 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013