BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 09:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Bruker Smiles

Bruker Smiles

The above title is not aimed to mislead and it does not refer to Bruker’s state of mind: Quite simply, the purpose of this post is merely technical and the relation between Bruker and its smiles will be apparent in a moment… Just keep reading…

Because it wouldn't make sense otherwise, NMR instruments use receiver systems equipped with digital filters since a relatively long time ago. The advantages of such digital filters (generally designed as low-pass filters and applied together with oversampling and decimation methods) are many fold, ranging from higher quality spectral baselines to SNR and effective dynamic range improvements, enhanced reduction of potential sources of folded signals, etc

It´s not all about advantages though … I’m sure most of you are already very well aware of the pesky problem that is infamously known as group-delay artifact in Bruker (and Jeol) data which has plagued the NMR community since these companies switched to digital receivers. In short, the FID resulting from the digital filter does not start at time = 0 but only after a long and slowly rising oscillation of length G (G = Group Delay).



Some empirical procedures to correct it were presented on the internet but they are palliative and do not resolve the problem completely, particularly when apodization is applied.
Typically and depending on how the FID is processed, the spectrum might exhibit smiles (baseline artifacts pointing up) or frowns (baseline artifacts pointing down) at the outer regions of the spectrum as depicted below:




The ultimate solution

These small artifacts are in general not a big problem as one could use a spectral width large enough so that the peaks of interest in the spectrum will not be affected by these artifacts (although some processing algorithms such as backward Linear Prediction could be somewhat problematic with the Group Delay). In any case, we did not feel very comfortable with present solutions to this problem. A few months ago, I went for dinner with Stan and right after it, the power of the red wine and above all, the Galician octopus inspired Stan in such a way that he managed to understand the engineering drawback and proposed a new correction algorithm which we implemented together in Mnova just a few minutes later (whilst still under the influence of the wine :-) ).
Basically we have now a new pre-processing algorithm that corrects in a totally automatic way any Bruker FID corrupted by the group-delay artifact, producing a normal and physically correct FID so that the smiles will not be seen in the f-domain spectrum. The performance of the new algorithm is illustrated in the figure below:




This enhanced correction is available in Mnova since version 6.1.1 onwards, although it is not the default processing method for the moment. In order to activate it, it is necessary to select it via Processing/Group Delay menu command.

I guess the take home from the story is never underestimate the power of red wine and Galician octopus :-)





More...

Source: NMR-analysis blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] bruker 300hzs
bruker 300hzs what is lock Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 11-02-2011 02:14 AM
[NMRwiki tweet] nmrwiki: How to change style of lines in @bruker TopSpin? #nmr http://qa.nmrwiki.org/question/233/bruker-tpospin-for-brain-spectroscopy-analysis
nmrwiki: How to change style of lines in @bruker TopSpin? #nmr http://qa.nmrwiki.org/question/233/bruker-tpospin-for-brain-spectroscopy-analysis nmrwiki: How to change style of lines in @bruker TopSpin? #nmr http://qa.nmrwiki.org/question/233/bruker-tpospin-for-brain-spectroscopy-analysis Source: NMRWiki tweets
nmrlearner Twitter NMR 0 03-04-2011 02:12 AM
[NMR Geek blog] TCU error in Bruker!!
TCU error in Bruker!! Okei, I played with so many parameters to get away with the following error but could not. I was trying to install a pulse sequence on a Bruker Spectrometer with XwinNMR (old Bruker software) which was originally written on TopSpin (latest Bruker software) when this error starting popping up every time I tried to optimize Full story can be found on the NMR geek blog
nmrlearner News from NMR blogs 0 09-11-2010 01:25 AM
[Stan NMR blog] Galician octopus quenches Bruker & Jeol smiles
Galician octopus quenches Bruker & Jeol smiles Great news for hundreds of Bruker and Jeol Users on Carlos Cobas' blog More...
nmrlearner News from NMR blogs 0 08-21-2010 05:42 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:06 PM.


Map