BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 08:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Background Suppression in Liquids

Background Suppression in Liquids

High resolution NMR probes for liquids may contain parts near the coil consiting of the nuclei being observed. The parts give rise to background signals which can severely affect the NMR data. When observing11B, there is a background signal from boron containing parts near the coil and also the borosilicate glass in the NMR tube containing the sample.

Cory and Ritchey* introduced a very simple, clever method to suppress background signals in 1988. Their method uses a composite pulse, consisting of a 90° and two 180° pulses with appropriate phase cycling, in place of a conventional 90° pulse. The phase cycled composite pulse is essentially a 90° pulse for all spins inside the coil and 0° for all spins outside of the coil. An example of its implementation is shown in the figure below. The bottom traces show the 11B [1H] NMR spectra for a dilute sample of NaBH4 and a "real" synthetic sample on the left and right, respectively. One can see an enormous background signal from both the NMR probe and the NMR tube. In the case of the "real" synthetic sample, the information from the spectrum is difficult or impossible to recover. The top traces show similar spectra acquired using the composite pulse. The only background signal remaining is that from the portion of the NMR tube inside the coil. This pulse sequence (without proton decoupling) is in the Bruker pulse program library called "zgbs". It is not exclusive to 11B.

D.G. Cory and W.M. Ritchey. Journal of Magnetic Resonance, 80, 128 (1988).



Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[KPWU blog] [PyMOL] gradient background color
gradient background color Starting at *PyMOL 1.4, *single color for the background is no longer the only choice. By using 3 PyMOL commands, the gradient background color can be easily shown. The only thing users have to know is that command “ray” doesn’t support this gradient color yet. So if you type “ray” in the pymol terminal , http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=619&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 11-15-2011 11:36 PM
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects
Expanding the utility of NMR restraints with paramagnetic compounds: Background and practical aspects Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 27 May 2011</br> Julia, Koehler , Jens, Meiler</br> *Highlights:*? introduction of a lanthanide ion into a protein leads to paramagnetic effects and partial alignment. ? Paramagnetic Relaxation Enhancements (PREs), Residual Dipolar Couplings (RDCs), and Pseudo-Contact Shifts (PCSs), among others, can be measured. ? amplitude of paramagnetic effects...
nmrlearner Journal club 0 05-28-2011 10:54 PM
[NMR paper] Low 13C-background for NMR-based studies of ligand binding using 13C-depleted glucose
Low 13C-background for NMR-based studies of ligand binding using 13C-depleted glucose as carbon source for microbial growth: 13C-labeled glucose and 13C-forskolin binding to the galactose-H+ symport protein GalP in Escherichia coli. Related Articles Low 13C-background for NMR-based studies of ligand binding using 13C-depleted glucose as carbon source for microbial growth: 13C-labeled glucose and 13C-forskolin binding to the galactose-H+ symport protein GalP in Escherichia coli. J Am Chem Soc. 2004 Jan 14;126(1):86-7 Authors: Patching SG, Herbert RB,...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[U. of Ottawa NMR Facility Blog] Hahn Echo for 11B Background Suppression in Solids
Hahn Echo for 11B Background Suppression in Solids Solids NMR probes often contain boron rich parts near the coil in which the sample resides. Boron nitride, in particular, is a material very commonly used. This can be very problematic if one wishes to collect 11B NMR data, in that a strong background signal may be observed. Even though these parts are not directly inside the coil with the sample, they do experience a small amount of rf from the coil and the coil does detect a 11B NMR signal from them. One simple way to avoid this problem is to use a Hahn echo to observe the 11B spectrum....
nmrlearner News from NMR blogs 0 08-21-2010 08:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:15 PM.


Map