BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-09-2017, 01:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default [NMR] ultra fast-MAS proton-detected solid-state NMR

From The DNP-NMR Blog:

[NMR] ultra fast-MAS proton-detected solid-state NMR

PhD students and postdocs in ultra fast-MAS proton-detected solid-state NMR


The group of Prof. Dr. Rasmus Linser at the Ludwig-Maximilians-University in Munich, Germany, is looking for additional group members in the field of ultra fast-MAS bio-NMR.
Our focus is the characterization of protein structure, dynamics and interactions, using both solution and solid-state NMR spectroscopy. In the past, we have committed ourselves to the development of innovative NMR methodology as well as application of new and established methods to better understand the behavior of various proteins. In particular, we have a major record in proton-detected solid-state NMR, which is currently transforming into a new state of the art in solid-state NMR. Our interests nowadays are structure and dynamics playing a role for enzymatic function and for protein-small molecule interactions. Our lab has its own new 800 and 700 MHz magnets used for both, solids and solution. We own a broad selection of solids probes, including 3.2, 2.5, 1.3, and 0.7 mm, reaching up to the highest spin rates of commercially available technology above 110 kHz MAS. The biochemistry lab structure is very well set up (including for example a brand-new Beckman Coulter centrifuge and two ÄKTA systems) and furthermore well connected within the faculty.


The preferred candidate should be interested in both, protein preparation and NMR characterization of proteins, including all aspects from screening of conditions, assignments, structure calculation, and basics of dynamics.
He or she should be a devoted scientist hungry for structural biology data and scientific exchange with his or her fellow coworkers. A social and committed personality is also an important prerequisite.


Munich is a major science hub known for its lifestyle and culture, close to the Alps and picturesque nature reserves. The faculty for Chemistry and Pharmacy, including the Gene Center, is around the corner from the Biology campus and the MPI for biochemistry and has an extremely constructive and collegial vibe. The group forms part of several platforms fostering high-quality interdisciplinary research and scientific exchange, including the CIPSM Center of Excellence, the collaborative research project 749 the Center for NanoSciences CeNS, and the LMU Center for Advanced Studies.
Some German language skills would be desirable, but are not a must.


If you feel like you meet the above criteria, I would be very happy to get in touch.


Please also check the following webpages:


www.cup.lmu.de/oc/linser/
http://www.cipsm.de/
http://www.cens.de/


--
Prof. Dr. Rasmus Linser
Ludwig-Maximilians-Universität München
Department Chemie
Butenandtstr. 5-13
81377 München
http://www.cup.lmu.de/oc/linser/
EMAIL: RASMUS.LINSER@LMU.DE




====================================
This is the AMPERE MAGNETIC RESONANCE mailing list:
http://www.drorlist.com/nmrlist.html


NMR web database:
http://www.drorlist.com/nmr.html


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.
Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. Magn Reson Chem. 2016 Feb;54(2):132-5 Authors: Singh C, Rai RK, Kayastha AM, Sinha N Abstract Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line...
nmrlearner Journal club 0 01-28-2017 08:29 PM
[NMR paper] Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach.
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach. Related Articles Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach. J Biomol NMR. 2016 Jan 19; Authors: Wang S, Matsuda I, Long F, Ishii Y Abstract This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce...
nmrlearner Journal club 0 01-20-2016 11:54 PM
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach
Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach Abstract This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40â??80Â*kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055â??15058, 2015) combines the reverse 13C,...
nmrlearner Journal club 0 01-19-2016 07:37 PM
[NMR paper] Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. PLoS One. 2015;10(4):e0122714 Authors: Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T,...
nmrlearner Journal club 0 04-11-2015 12:04 AM
[NMR paper] High-resolution proton-detected NMR of proteins at very fast MAS.
High-resolution proton-detected NMR of proteins at very fast MAS. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif High-resolution proton-detected NMR of proteins at very fast MAS. J Magn Reson. 2015 Apr;253:36-49 Authors: Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G Abstract When combined with high-frequency (currently ~60kHz) magic-angle spinning (MAS), proton detection boosts sensitivity and increases coherence lifetimes, resulting in narrow...
nmrlearner Journal club 0 03-24-2015 09:58 PM
High-resolution proton-detected NMR of proteins at very fast MAS
High-resolution proton-detected NMR of proteins at very fast MAS Publication date: April 2015 Source:Journal of Magnetic Resonance, Volume 253</br> Author(s): Loren B. Andreas , Tanguy Le Marchand , Kristaps Jaudzems , Guido Pintacuda</br> When combined with high-frequency (currently ~60kHz) magic-angle spinning (MAS), proton detection boosts sensitivity and increases coherence lifetimes, resulting in narrow 1 H lines. Herein, we review methods for efficient proton detected techniques and applications in highly deuterated proteins, with an emphasis on 100%...
nmrlearner Journal club 0 03-20-2015 01:48 AM
[NMR paper] Out-and-back (13)C- (13)C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS.
Out-and-back (13)C- (13)C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. Related Articles Out-and-back (13)C- (13)C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J Biomol NMR. 2013 Jun 29; Authors: Barbet-Massin E, Pell AJ, Jaudzems K, Franks WT, Retel JS, Kotelovica S, Akopjana I, Tars K, Emsley L, Oschkinat H, Lesage A, Pintacuda G Abstract We present here (1)H-detected triple-resonance H/N/C experiments that...
nmrlearner Journal club 0 07-03-2013 01:46 PM
[NMR paper] (13) C-Detected Through-Bond Correlation Experiments for Protein Resonance Assignment by Ultra-Fast MAS Solid-State NMR.
(13) C-Detected Through-Bond Correlation Experiments for Protein Resonance Assignment by Ultra-Fast MAS Solid-State NMR. Related Articles (13) C-Detected Through-Bond Correlation Experiments for Protein Resonance Assignment by Ultra-Fast MAS Solid-State NMR. Chemphyschem. 2013 Apr 15; Authors: Barbet-Massin E, Pell AJ, Knight MJ, Webber AL, Felli IC, Pierattelli R, Emsley L, Lesage A, Pintacuda G Abstract We present two sequences which combine ((1) H,(15) N) and ((15) N,(13) C) selective cross-polarization steps with an efficient variant...
nmrlearner Journal club 0 04-17-2013 08:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:49 PM.


Map