BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-14-2017, 10:37 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default New NMR tools for protein structure and function: Spin tags for dynamic nuclear polarization solid state NMR

New NMR tools for protein structure and function: Spin tags for dynamic nuclear polarization solid state NMR

Publication date: Available online 13 June 2017
Source:Archives of Biochemistry and Biophysics

Author(s): Rivkah Rogawski, Ann McDermott

Magic angle spinning solid state NMR studies of biological macromolecules [1–3] have enabled exciting studies of membrane proteins [4,5], amyloid fibrils [6], viruses, and large macromolecular assemblies [7]. Dynamic nuclear polarization (DNP) provides a means to enhance detection sensitivity for NMR, particularly for solid state NMR, with many recent biological applications and considerable contemporary efforts towards elaboration and optimization of the DNP experiment. This review explores precedents and innovations in biological DNP experiments, especially highlighting novel chemical biology approaches to introduce the radicals that serve as a source of polarization in the DNP experiments.







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization
From The DNP-NMR Blog: Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization Yamamoto, K., et al., Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2015. 1848(1, Part B): p. 342-349. http://dx.doi.org/10.1016/j.bbamem.2014.07.008
nmrlearner News from NMR blogs 0 05-04-2015 04:19 PM
[NMR paper] Cellular Solid-State NMR Investigation of a Membrane Protein Using Dynamic Nuclear Polarization.
Cellular Solid-State NMR Investigation of a Membrane Protein Using Dynamic Nuclear Polarization. Related Articles Cellular Solid-State NMR Investigation of a Membrane Protein Using Dynamic Nuclear Polarization. Biochim Biophys Acta. 2014 Jul 10; Authors: Yamamoto K, Caporini MA, Im SC, Waskell L, Ramamoorthy A Abstract While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is...
nmrlearner Journal club 0 07-16-2014 10:46 AM
Cellular Solid-State NMR Investigation of a Membrane Protein Using Dynamic Nuclear Polarization
Cellular Solid-State NMR Investigation of a Membrane Protein Using Dynamic Nuclear Polarization Publication date: Available online 11 July 2014 Source:Biochimica et Biophysica Acta (BBA) - Biomembranes</br> Author(s): Kazutoshi Yamamoto , Marc A. Caporini , Sang-Choul Im , Lucy Waskell , Ayyalusamy Ramamoorthy</br> While an increasing number of structural biology studies successfully demonstrate the power of high-resolution structures and dynamics of membrane proteins in fully understanding their function, there is considerable interest in developing NMR...
nmrlearner Journal club 0 07-12-2014 04:28 AM
Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance
From The DNP-NMR Blog: Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance Siaw, T.A., et al., Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance. Phys. Chem. Chem. Phys., 2014. http://dx.doi.org/10.1039/C4CP02013H
nmrlearner News from NMR blogs 0 06-20-2014 08:14 PM
Towards structure determination of self-assembled peptides using dynamic nuclear polarization enhanced solid-state NMR spectroscopy
From The DNP-NMR Blog: Towards structure determination of self-assembled peptides using dynamic nuclear polarization enhanced solid-state NMR spectroscopy Takahashi, H., et al., Towards structure determination of self-assembled peptides using dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Angew Chem Int Ed Engl, 2013. 52(27): p. 6979-82. http://www.ncbi.nlm.nih.gov/pubmed/23564735
nmrlearner News from NMR blogs 0 04-23-2014 06:31 PM
Towards Structure Determination of Self-Assembled Peptides Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy
From The DNP-NMR Blog: Towards Structure Determination of Self-Assembled Peptides Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy Takahashi, H., et al., Towards Structure Determination of Self-Assembled Peptides Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy. Angew. Chem. Int. Ed., 2013: p. n/a-n/a. http://www.ncbi.nlm.nih.gov/pubmed/23564735
nmrlearner News from NMR blogs 0 06-13-2013 04:24 AM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy Ivan V. Sergeyev, Loren A. Day, Amir Goldbourt and Ann E. McDermott http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2043062/aop/images/medium/ja-2011-043062_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja2043062 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/EeKgo5vg1K0
nmrlearner Journal club 0 11-30-2011 10:45 PM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy. Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy. J Am Chem Soc. 2011 Aug 22; Authors: Sergeyev IV, Day LA, Goldbourt A, McDermott AE Abstract Solid state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100K, as well as non-DNP spectra at a variety of field strengths and...
nmrlearner Journal club 0 08-23-2011 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:30 PM.


Map