BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Yeast expression and NMR analysis of the extracellular domain of muscle nicotinic ace

Yeast expression and NMR analysis of the extracellular domain of muscle nicotinic acetylcholine receptor alpha subunit.

Related Articles Yeast expression and NMR analysis of the extracellular domain of muscle nicotinic acetylcholine receptor alpha subunit.

J Biol Chem. 2002 Apr 12;277(15):12613-21

Authors: Yao Y, Wang J, Viroonchatapan N, Samson A, Chill J, Rothe E, Anglister J, Wang ZZ

The alpha subunit of the nicotinic acetylcholine receptor (AChR) from Torpedo electric organ and mammalian muscle contains high affinity binding sites for alpha-bungarotoxin and for autoimmune antibodies in sera of patients with myasthenia gravis. To obtain sufficient materials for structural studies of the receptor-ligand complexes, we have expressed part of the mouse muscle alpha subunit as a soluble, secretory protein using the yeast Pichia pastoris. By testing a series of truncated fragments of the receptor protein, we show that alpha211, the entire amino-terminal extracellular domain of AChR alpha subunit (amino acids 1-211), is the minimal segment that could fold properly in yeast. The alpha211 protein was secreted into the culture medium at a concentration of >3 mg/liter. It migrated as a 31-kDa polypeptide with N-linked glycosylation on SDS-polyacrylamide gel. The protein was purified to homogeneity by isoelectric focusing electrophoresis (pI 5.8), and it appeared as a 4.5 S monomer on sucrose gradient at concentrations up to 1 mm ( approximately 30 mg/ml). The receptor domain bound monoclonal antibody mAb35, a conformation-specific antibody against the main immunogenic region of the AChR. In addition, it formed a high affinity complex with alpha-bungarotoxin (k(D) 0.2 nm) but showed relatively low affinity to the small cholinergic ligand acetylcholine. Circular dichroism spectroscopy of alpha211 revealed a composition of secondary structure corresponding to a folded protein. Furthermore, the receptor fragment was efficiently (15)N-labeled in P. pastoris, and proton cross-peaks were well dispersed in nuclear Overhauser effect and heteronuclear single quantum coherence spectra as measured by NMR spectroscopy. We conclude that the soluble AChR protein is useful for high resolution structural studies.

PMID: 11812776 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Unravelling the Conformational Plasticity of the Extracellular Domain of a Prokaryotic nAChR Homologue in Solution by NMR
Unravelling the Conformational Plasticity of the Extracellular Domain of a Prokaryotic nAChR Homologue in Solution by NMR http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi201223u/aop/images/medium/bi-2011-01223u_0002.gif Biochemistry DOI: 10.1021/bi201223u http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/rGTPGWIkyp0 More...
nmrlearner Journal club 0 10-21-2011 09:52 AM
Nmr structure and action on nicotinic acetylcholine receptors of water-soluble domain of human lynx1.
NMR STRUCTURE AND ACTION ON NICOTINIC ACETYLCHOLINE RECEPTORS OF WATER-SOLUBLE DOMAIN OF HUMAN LYNX1. NMR STRUCTURE AND ACTION ON NICOTINIC ACETYLCHOLINE RECEPTORS OF WATER-SOLUBLE DOMAIN OF HUMAN LYNX1. J Biol Chem. 2011 Jan 20; Authors: Lyukmanova EN, Shenkarev ZO, Shulepko MA, Mineev KS, D'Hoedt D, Kasheverov IE, Filkin SY, Krivolapova AP, Janickova H, Dolezal V, Dolgikh DA, Arseniev AS, Bertrand D, Tsetlin VI, Kirpichnikov MP Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake...
nmrlearner Journal club 0 01-22-2011 01:52 PM
[NMR paper] NMR structure and peptide hormone binding site of the first extracellular domain of a
NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Related Articles NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12836-41 Authors: Grace CR, Perrin MH, DiGruccio MR, Miller CL, Rivier JE, Vale WW, Riek R The corticotropin-releasing factor (CRF) ligand family has diverse effects on the CNS, including the modulation of the stress response. The ligands'...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Structural characterization by NMR of the natively unfolded extracellular domain of b
Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan. Related Articles Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan. Biochemistry. 2003 Nov 25;42(46):13717-24 Authors: Bozzi M, Bianchi M, Sciandra F, Paci M, Giardina B, Brancaccio A, Cicero DO Dystroglycan (DG) is an adhesion molecule playing a...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Structural analysis of the extracellular domain of vaccinia virus envelope protein, A
Structural analysis of the extracellular domain of vaccinia virus envelope protein, A27L, by NMR and CD spectroscopy. Related Articles Structural analysis of the extracellular domain of vaccinia virus envelope protein, A27L, by NMR and CD spectroscopy. J Biol Chem. 2002 Jun 7;277(23):20949-59 Authors: Lin TH, Chia CM, Hsiao JC, Chang W, Ku CC, Hung SC, Tzou DL This study presents the molecular structure of the extracellular domain of vaccinia virus envelope protein, A27L, determined by NMR and CD spectroscopy. A recombinant protein, eA27L-aa,...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Expression of deuterium-isotope-labelled protein in the yeast pichia pastoris for NMR
Expression of deuterium-isotope-labelled protein in the yeast pichia pastoris for NMR studies. Related Articles Expression of deuterium-isotope-labelled protein in the yeast pichia pastoris for NMR studies. J Biomol NMR. 2000 Aug;17(4):337-47 Authors: Morgan WD, Kragt A, Feeney J Deuterium isotope labelling is important for NMR studies of large proteins and complexes. Many eukaryotic proteins are difficult to express in bacteria, but can be efficiently produced in the methylotrophic yeast Pichia pastoris. In order to facilitate NMR studies of...
nmrlearner Journal club 0 11-19-2010 08:29 PM
NMR structure of the first extracellular domain of corticotropin releasing factor rec
NMR structure of the first extracellular domain of corticotropin releasing factor receptor 1 (ECD1-CRF-R1) complexed with a high affinity agonist. Related Articles NMR structure of the first extracellular domain of corticotropin releasing factor receptor 1 (ECD1-CRF-R1) complexed with a high affinity agonist. J Biol Chem. 2010 Sep 15; Authors: Grace CR, Perrin MH, Gulyas J, Rivier JE, Vale WW, Riek R The corticotropin releasing factor (CRF) peptide hormone family members coordinate endocrine, behavioral, autonomic and metabolic responses to...
nmrlearner Journal club 0 09-17-2010 04:14 PM
[NMR paper] Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR
Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy. Related Articles Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy. Genes Dev. 1991 May;5(5):764-72 Authors: Phillips CL, Vershon AK, Johnson AD, Dahlquist FW The yeast alpha 2 protein is a regulator of cell type in Saccharomyces cerevisiae. It represses transcription of a set of target genes by binding to an operator located upstream of each of these genes. The alpha 2 protein shares weak sequence...
nmrlearner Journal club 0 08-21-2010 11:16 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:46 AM.


Map