BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-01-2013, 12:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases.

X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases.

X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases.

Methods. 2013 Jul 27;

Authors: Elena Gulerez I, Gehring K

Abstract
Protein tyrosine phosphatases (PTPs) are well recognized as key targets in a wide spectrum of diseases, such as diabetes, obesity and cancer. Their roles in these maladies have been successfully characterized by various methods. However, it is only by utilizing the entire gamut of tools and techniques available that we can build a sufficient knowledge of their mode of action to bridge the gap between bench work and bedside treatments. Here, we highlight X-ray crystallography and NMR for the study of PTPs and describe methodological aspects of their use. These techniques are highly developed, versatile methods that together afford insight into protein dynamics, function and three-dimensional structure. They provide the detail necessary for the structure-based design and identification of lead compounds with potential as PTP-specific drugs for therapeutic use.


PMID: 23899694 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases
X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases Publication date: Available online 27 July 2013 Source:Methods</br> Author(s): Irina Elena Gulerez , Kalle Gehring</br> Protein tyrosine phosphatases (PTPs) are well recognized as key targets in a wide spectrum of diseases, such as diabetes, obesity and cancer. Their roles in these maladies have been successfully characterized by various methods. However, it is only by utilizing the entire gamut of tools and techniques available that we can build a sufficient knowledge of their...
nmrlearner Journal club 0 07-28-2013 07:11 AM
[NMR paper] An overview of tools for the validation of protein NMR structures.
An overview of tools for the validation of protein NMR structures. An overview of tools for the validation of protein NMR structures. J Biomol NMR. 2013 Jul 23; Authors: Vuister GW, Fogh RH, Hendrickx PM, Doreleijers JF, Gutmanas A Abstract Biomolecular structures at atomic resolution present a valuable resource for the understanding of biology. NMR spectroscopy accounts for 11*% of all structures in the PDB repository. In response to serious problems with the accuracy of some of the NMR-derived structures and in order to facilitate...
nmrlearner Journal club 0 07-24-2013 04:52 PM
[NMR paper] (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamic
(13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin. Related Articles (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin. Biophys J. 2002 Nov;83(5):2812-25 Authors: Damberg P, Jarvet J, Allard P, Mets U, Rigler R, Gräslund A Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Novel NMR tools to study structure and dynamics of biomembranes.
Novel NMR tools to study structure and dynamics of biomembranes. Related Articles Novel NMR tools to study structure and dynamics of biomembranes. Chem Phys Lipids. 2002 Jun;116(1-2):135-51 Authors: Gawrisch K, Eldho NV, Polozov IV Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Tools for the automated assignment of high-resolution three-dimensional protein NMR s
Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. J Biomol NMR. 1997 Oct;10(3):207-19 Authors: Croft D, Kemmink J, Neidig KP, Oschkinat H One of the major bottlenecks in the determination of proteinstructures by NMR is in the evaluation of the data produced by theexperiments. An important step in this process is assignment, where...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Related Articles Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Biochemistry. 1990 Jun 12;29(23):5567-74 Authors: Herzfeld J, Das Gupta SK, Farrar MR, Harbison GS, McDermott AE, Pelletier SL, Raleigh DP, Smith SO, Winkel C, Lugtenburg J Solid-state 13C MAS NMR spectra were obtained for dark-adapted bacteriorhodopsin (bR) labeled with Tyr. Difference spectra (labeled minus natural abundance) taken at pH values between 2 and...
nmrlearner Journal club 0 08-21-2010 10:48 PM
A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implicati
A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implications for Probing Tyrosine Side Chains in Proteins. Related Articles A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implications for Probing Tyrosine Side Chains in Proteins. J Phys Chem B. 2010 Aug 16; Authors: Zhu J, Lau JY, Wu G We report experimental characterization of (17)O quadrupole coupling (QC) and chemical shift (CS) tensors for the phenolic oxygen in three l-tyrosine (l-Tyr) compounds: l-Tyr, l-Tyr.HCl, and Na(2)(l-Tyr)....
nmrlearner Journal club 0 08-18-2010 11:15 AM
Postdoctoral position to study Protein-Protein Interactions and their role in Mechanisms of Signal Transduction using protein solution NMR/x-ray crystallography
Spincore.com are advertising a postdoc NMR position. It sounds pretty interesting. """ Postdoctoral position to study Protein-Protein Interactions and their role in Mechanisms of Signal Transduction using protein solution NMR /x-ray crystallography Case Medical School, Cleveland, Ohio, USA How are signaling events transmitted from one protein to another? To answer this question we are looking to add a postdoctoral co-workers to our interdisciplinary team. Our interest is to understand protein-protein interactions, protein structure and dynamics in the context of cell signaling...
steveUK Job marketplace 0 08-10-2008 02:37 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:06 PM.


Map