BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-01-2010, 06:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy.

Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy.

Related Articles Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy.

J Biomol NMR. 2005 Jul;32(3):195-207

Authors: Böckmann A, Juy M, Bettler E, Emsley L, Galinier A, Penin F, Lesage A

We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T2' -selective 1H-13C-13C correlation spectra for site-specific assignments of carbons nearby labile protein protons. We compare the proton T2' selective scheme to frequency selective water observation in deuterated proteins, and discuss the impacts of deuteration on 13C linewidths in Crh. We observe that in micro-crystalline proteins, solvent accessible hydroxyl and amino protons show comparable exchange rates with water protons as for proteins in solution, and that structural constraints, such as hydrogen bonding or solvent accessibility, more significantly reduce exchange rates.

PMID: 16132820 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Biophys J. 2011 Aug 3;101(3):L23-L25 Authors: Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific...
nmrlearner Journal club 0 08-03-2011 12:00 PM
Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by (13)C magic-angle spinning NMR spectroscopy.
Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by (13)C magic-angle spinning NMR spectroscopy. Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by (13)C magic-angle spinning NMR spectroscopy. J Am Chem Soc. 2010 Nov 10;132(44):15542-3 Authors: Thamarath SS, Heberle J, Hore PJ, Kottke T, Matysik J Until now, the solid-state photo-CIDNP effect, discovered in 1994 by Zysmilich and McDermott, has been observed selectively in photosynthetic systems. Here we present the first observation of this effect in a...
nmrlearner Journal club 0 03-02-2011 11:54 AM
[NMR paper] Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectro
Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. Related Articles Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. J Am Chem Soc. 2004 Sep 22;126(37):11422-3 Authors: Giraud N, Böckmann A, Lesage A, Penin F, Blackledge M, Emsley L Site-specific nitrogen-15 longitudinal relaxation rates are measured for the microcrystalline dimeric form of the protein Crh using multidimensional high-resolution solid-state NMR methods. The measured rates are used to provide a...
nmrlearner Journal club 0 11-24-2010 10:01 PM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy Abstract We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15Nâ??T 1 timescales). We observed chemical exchange for 6...
nmrlearner Journal club 0 10-27-2010 08:51 AM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy. Related Articles Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy. J Biomol NMR. 2010 Oct 20; Authors: Del Amo JM, Fink U, Reif B We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that...
nmrlearner Journal club 0 10-22-2010 06:02 AM
Protein-ice interaction of an antifreeze protein observed with solid-state NMR [Chemi
Protein-ice interaction of an antifreeze protein observed with solid-state NMR Siemer, A. B., Huang, K.-Y., McDermott, A. E.... Date: 2010-10-12 NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions of proteins with their hydration shell and the ice lattice in frozen solution. We applied these methods to compare solvent interaction of an ice-binding...
nmrlearner Journal club 0 10-13-2010 04:10 AM
Protein-ice interaction of an antifreeze protein observed with solid-state NMR.
Protein-ice interaction of an antifreeze protein observed with solid-state NMR. Related Articles Protein-ice interaction of an antifreeze protein observed with solid-state NMR. Proc Natl Acad Sci U S A. 2010 Sep 30; Authors: Siemer AB, Huang KY, McDermott AE NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions...
nmrlearner Journal club 0 10-05-2010 12:11 PM
[NMR paper] Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy:
Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Related Articles Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Biochemistry. 1990 Jul 3;29(26):6303-13 Authors: Henry GD, Sykes BD The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:46 AM.


Map