BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-03-2021, 01:55 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.

Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.

Related Articles Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR.

Biophys J. 2021 Jan 29;:

Authors: Xu X, Gagné D, Aramini JM, Gardner KH

Abstract
Proteins often interconvert between different conformations in ways critical to their function. While manipulating such equilibria for biophysical study is often challenging, the application of pressure is a potential route to achieve such control by favoring the population of lower volume states. Here, we use this feature to study the interconversion of ARNT PAS-B Y456T, which undergoes a dramatic +3 slip in beta-strand register as it switches between two stably-folded conformations. Using high pressure biomolecular NMR approaches, we obtained the first quantitative data testing two key hypotheses of this process: the slipped conformation is both smaller and less compressible than the wildtype equivalent, and the interconversion proceeds through a chiefly-unfolded intermediate state. Data collected in steady state pressure and time-resolved pressure-jump modes, including observed pressure-dependent changes in the populations of the two conformers and increased rate of interconversion between conformers, support both hypotheses. Our work exemplifies how these approaches, which can be generally applied to protein conformational switches, can provide unique information that is not easily accessible through other techniques.


PMID: 33524371 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Intrinsic differences in backbone dynamics between wild type and DNA-contact mutants of p53 DNA binding domain revealed by NMR spectroscopy.
Intrinsic differences in backbone dynamics between wild type and DNA-contact mutants of p53 DNA binding domain revealed by NMR spectroscopy. Intrinsic differences in backbone dynamics between wild type and DNA-contact mutants of p53 DNA binding domain revealed by NMR spectroscopy. Biochemistry. 2017 Aug 24;: Authors: Rasquinha JA, Bej A, Dutta S, Mukherjee S Abstract Mutations in p53's DNA binding domain (p53DBD) are associated with 50% of all cancers, making it an essential system to investigate in order to understand the...
nmrlearner Journal club 0 08-25-2017 05:31 PM
Monitoring Protein Folding Through High Pressure NMR Spectroscopy
Monitoring Protein Folding Through High Pressure NMR Spectroscopy Publication date: Available online 2 June 2017 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Julien Roche, Catherine A. Royer, Christian Roumestand</br> High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures...
nmrlearner Journal club 0 06-02-2017 08:33 PM
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study Publication date: 3 February 2017 Source:Biophysical Journal, Volume 112, Issue 3, Supplement 1</br> Author(s): Kelly A. Jenkins, Martin Fossat, Thuy Dao, Yi Zhang, Zackery White, Doug Barrick, Catherine A. Royer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-03-2017 09:55 PM
[NMR paper] Volume of Hsp90 Protein-Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry and NMR.
Volume of Hsp90 Protein-Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry and NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Volume of Hsp90 Protein-Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry and NMR. J Phys Chem B. 2016 Aug 29; Authors: Toleikis Z, Sirotkin VA, Skvarnavi?ius G, Smirnovien? J, Roumestand C, Matulis D, Petrauskas V Abstract Human heat shock protein 90 (Hsp90) is a key...
nmrlearner Journal club 0 08-31-2016 02:34 PM
[NMR paper] Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein. Related Articles Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein. Chembiochem. 2013 Jun 28; Authors: Roche J, Ying J, Maltsev AS, Bax A Abstract The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated ?-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close...
nmrlearner Journal club 0 07-03-2013 01:46 PM
[NMR paper] pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR.
pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles pH-triggered, activated-state conformations of the influenza hemagglutinin fusion...
nmrlearner Journal club 0 02-07-2013 10:31 PM
High-Pressure Protein Crystallography and NMR to Explore Protein Conformations.
High-Pressure Protein Crystallography and NMR to Explore Protein Conformations. High-Pressure Protein Crystallography and NMR to Explore Protein Conformations. Annu Rev Biophys. 2010 Jul 21; Authors: Collins MD, Kim CU, Gruner SM High-pressure methods for solving protein structures by X-ray crystallography and NMR are maturing. These techniques are beginning to impact our understanding of thermodynamic and structural features that define not only the protein's native conformation, but also the higher free energy conformations. The ability of...
nmrlearner Journal club 0 02-02-2011 02:40 AM
[NMR paper] Two folded conformers of ubiquitin revealed by high-pressure NMR.
Two folded conformers of ubiquitin revealed by high-pressure NMR. Related Articles Two folded conformers of ubiquitin revealed by high-pressure NMR. Biochemistry. 2001 Nov 13;40(45):13556-63 Authors: Kitahara R, Yamada H, Akasaka K High-pressure 15N/1H two-dimensional NMR spectroscopy has been utilized to study conformational fluctuation of a 76-residue protein ubiquitin at pH 4.5 at 20 degrees C. The on-line variable pressure cell technique is used in conjunction with a high-field NMR spectrometer operating at 750 MHz for 1H in the pressure...
nmrlearner Journal club 0 11-19-2010 08:44 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:28 AM.


Map