BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-29-2022, 07:58 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default In-vivo production of diverse ?-amino acid-containing proteins

In-vivo production of diverse ?-amino acid-containing proteins


Angewandte Chemie International Edition, Accepted Article.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Rapid Identification of Amino Acid types in Proteins using phase modulated 2D HN(CACB) and 2D HN(COCACB)
Rapid Identification of Amino Acid types in Proteins using phase modulated 2D HN(CACB) and 2D HN(COCACB) Publication date: Available online 7 April 2016 Source:Journal of Magnetic Resonance</br> Author(s): Abhinav Dubey, Somnath Mondal, Kousik Chandra, Hanudatta S. Atreya</br> We present a simple approach to rapidly identify amino acid types in proteins from a 2D spectrum. The method is based on the fact that 13C? chemical shifts of different amino acid types fall in distinct spectral regions. By evolving the 13C chemical shifts in the conventional HNCACB or...
nmrlearner Journal club 0 04-08-2016 01:05 PM
Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins
Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins Abstract Resonance assignment is a prerequisite for almost any NMR-based study of proteins. It can be very challenging in some cases, however, due to the nature of the protein under investigation. This is the case with intrinsically disordered proteins, for example, whose NMR spectra suffer from low chemical shifts dispersion and generally low resolution. For these systems, sequence specific assignment is highly time-consuming, so the prospect of using...
nmrlearner Journal club 0 02-19-2016 08:39 AM
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) Abstract The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10Â*Ã?). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a...
nmrlearner Journal club 0 11-28-2014 11:37 AM
Movements of proteins can be predicted from their amino acid sequence - HealthCanal.com
Movements of proteins can be predicted from their amino acid sequence - HealthCanal.com <img alt="" height="1" width="1" /> Movements of proteins can be predicted from their amino acid sequence HealthCanal.com Researchers of the VIB department of Structural Biology, in a collaboration within the 'Interuniversity Institute of Bioinformatics in Brussels (IB2)', have developed a method to predict how much the backbone chain of a protein moves based on only its ... Read here
nmrlearner Online News 0 11-26-2013 01:19 AM
[NMR paper] A suite of amino acid residue type classification pulse sequences for 13C-detected NMR of proteins
A suite of amino acid residue type classification pulse sequences for 13C-detected NMR of proteins Publication date: Available online 10 July 2013 Source:Journal of Magnetic Resonance</br> Author(s): David Pantoja-Uceda , Jorge Santoro</br> A suite of 13C-detected NMR pulse sequences to edit the correlation peaks of the CACO and CON spectra according to the amino acid residue type is presented. The pulse sequences exploit the topology of the C? carbon and led to the sorting of the CACO or CON signals into several classes depending on the nature of the generating...
nmrlearner Journal club 0 07-11-2013 12:07 PM
[NMR paper] Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology.
Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology. Chembiochem. 2013 Jan 30; Authors: Michel E, Skrisovska L, Wüthrich K, Allain FH Abstract Current solution NMR techniques enable structural investigations of proteins in molecular particles with sizes...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Amino acid selective unlabeling for sequence specific resonance assignments in proteins
Amino acid selective unlabeling for sequence specific resonance assignments in proteins Abstract Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative...
nmrlearner Journal club 1 03-20-2012 12:42 AM
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D -NOESY Francesco Fiorito, Torsten Herrmann, Fred F. Damberger and Kurt Wüthrich Journal of Biomolecular NMR; 2008; 42(1); pp 23-33 Abstract ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of 1HN, 15N, 13Cα, 13Cβ and possibly 1Hα from the previous polypeptide backbone assignment, and one or several 3D 13C- or 15N-resolved -NOESY spectra. ASCAN has also been...
Kirby Journal club 0 09-21-2008 11:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:37 PM.


Map