BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-15-2014, 12:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra.

VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra.

Related Articles VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra.

J Biomol NMR. 2014 Aug 14;

Authors: Nielsen JT, Nielsen NC

Abstract
NMR spectroscopy is a widely used technique for characterizing the structure and dynamics of macromolecules. Often large amounts of NMR data are required to characterize the structure of proteins. To save valuable time and resources on data acquisition, simulated data is useful in the developmental phase, for data analysis, and for comparison with experimental data. However, existing tools for this purpose can be difficult to use, are sometimes specialized for certain types of molecules or spectra, or produce too idealized data. Here we present a fast, flexible and robust tool, VirtualSpectrum, for generating peak lists for most multi-dimensional NMR experiments for both liquid and solid state NMR. It is possible to tune the quality of the generated peak lists to include sources of artifacts from peak overlap, noise and missing signals. VirtualSpectrum uses an analytic expression to represent the spectrum and derive the peak positions, seamlessly handling overlap between signals. We demonstrate our tool by comparing simulated and experimental spectra for different multi-dimensional NMR spectra and analyzing systematically three cases where overlap between peaks is particularly relevant; solid state NMR data, liquid state NMR homonuclear (1)H and (15)N-edited spectra, and 2D/3D heteronuclear correlation spectra of unstructured proteins. We analyze the impact of protein size and secondary structure on peak overlap and on the accuracy of structure determination based on data of different qualities simulated by VirtualSpectrum.


PMID: 25119482 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra
VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra Abstract NMR spectroscopy is a widely used technique for characterizing the structure and dynamics of macromolecules. Often large amounts of NMR data are required to characterize the structure of proteins. To save valuable time and resources on data acquisition, simulated data is useful in the developmental phase, for data analysis, and for comparison with experimental data. However, existing tools for this purpose can be difficult to use, are sometimes specialized for...
nmrlearner Journal club 0 08-13-2014 07:50 PM
[NMR paper] Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling.
Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling. Related Articles Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling. Chem Commun (Camb). 2013 Dec 23; Authors: Helge Meyer N, Zangger K Abstract Limited spectral resolution in the proton dimension of NMR spectra is a severe problem in intrinsically disordered proteins. Here we show that homonuclear...
nmrlearner Journal club 0 12-25-2013 03:39 PM
[NMR paper] Peakr: Simulating solid-state NMR spectra of proteins.
Peakr: Simulating solid-state NMR spectra of proteins. Related Articles Peakr: Simulating solid-state NMR spectra of proteins. Bioinformatics. 2013 Mar 14; Authors: Schneider R, Odronitz F, Hammesfahr B, Hellkamp M, Kollmar M Abstract MOTIVATION: When analyzing solid-state NMR spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, e.g., chemical shift predictions and structural...
nmrlearner Journal club 0 03-16-2013 03:18 PM
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition October 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 3</br> </br> </br> </br></br>
nmrlearner Journal club 0 12-15-2012 09:51 AM
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition October 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 3</br> </br> </br> </br></br>
nmrlearner Journal club 0 12-01-2012 06:10 PM
Parallel acquisition of multi-dimensional spectra in protein NMR
Parallel acquisition of multi-dimensional spectra in protein NMR Abstract We introduce the use of multiple receivers applied in parallel for simultaneously recording multi-dimensional data sets of proteins in a single experiment. The utility of the approach is established through the introduction of the 2D 15N,1HN||13CO HSQC experiment in which a pair of two-dimensional 15N,1HN and 15N,13CO spectra are recorded. The methodology is further extended to higher dimensionality via the 3D 1HN||13CO HNCA in which a pair of data sets recording 13Cα,15N,1HN and 13Cα,15N,13CO chemical shifts...
nmrlearner Journal club 0 07-20-2012 11:13 PM
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition
Analysis of non-uniformly sampled spectra with multi-dimensional decomposition Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 3</br> Vladislav Yu. Orekhov, Victor A. Jaravine</br> </br> </br></br>
nmrlearner Journal club 0 03-09-2012 09:16 AM
Analysis of non-uniformly sampled spectra with Multi-Dimensional Decomposition
Analysis of non-uniformly sampled spectra with Multi-Dimensional Decomposition Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 24 February 2011</br> Vladislav Yu., Orekhov , Victor A., Jaravine</br> More...
nmrlearner Journal club 0 02-26-2011 01:07 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:13 AM.


Map