BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-03-2014, 12:59 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solid-State NMR (31)P PRE Membrane Protein Immersion Depth Measurements.

Solid-State NMR (31)P PRE Membrane Protein Immersion Depth Measurements.

Related Articles Solid-State NMR (31)P PRE Membrane Protein Immersion Depth Measurements.

J Phys Chem B. 2014 Apr 1;

Authors: Maltsev S, Hudson S, Sahu ID, Liu L, Lorigan GA

Abstract
Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that 31P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the 31P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein-lipid interactions and membrane protein structural topology. Solid-state 31P NMR data on the 23 amino acid ?-helical nicotinic acetylcholine receptor nAChR M2? transmembrane domain model peptide followed predicted behavior of 31P PRE rates of the phospholipid headgroup as the spin label moves from the membrane surface towards the center of the membrane. Residue 11 showed the smallest changes in 31P PRE (center of the membrane), while residue 22 shows the largest 31P PRE change (near the membrane surface), when compared to the diamagnetic control M2? sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth.


PMID: 24689497 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase (1)H spin diffusion heteronuclear correlation NMR.
Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase (1)H spin diffusion heteronuclear correlation NMR. Related Articles Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase (1)H spin diffusion heteronuclear correlation NMR. J Biomol NMR. 2013 Apr 20; Authors: Wang T, Yao H, Hong M Abstract Solid-state NMR determination of the depth of insertion of membrane peptides and proteins has so far utilized (1)H spin diffusion and paramagnetic relaxation enhancement...
nmrlearner Journal club 0 04-23-2013 08:37 PM
Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen
Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen Abstract In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion.
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Angew Chem Int Ed Engl. 2011 Sep 16; Authors: Schanda P, Huber M, Boisbouvier J, Meier BH, Ernst M PMID: 21928443
nmrlearner Journal club 0 09-20-2011 03:10 PM
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion.
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Angew Chem Int Ed Engl. 2011 Sep 14; Authors: Schanda P, Huber M, Boisbouvier J, Meier BH, Ernst M PMID: 21915969
nmrlearner Journal club 0 09-15-2011 08:31 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA. Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA. J Am Chem Soc. 2011 Mar 1; Authors: Renault M, Bos MP, Tommassen J, Baldus M Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and...
nmrlearner Journal club 0 03-03-2011 12:34 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja109469c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I
nmrlearner Journal club 0 03-02-2011 02:01 AM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem. 2005 Sep;6(9):1693-700 Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner Journal club 0 12-01-2010 06:56 PM
Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phosph
Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. J Magn Reson. 2010 Aug 24; Authors: Chu S, Maltsev S, Emwas AH, Lorigan GA A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE)...
nmrlearner Journal club 0 09-22-2010 05:27 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:39 PM.


Map