BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S. (http://www.bionmr.com/forum/journal-club-9/unusual-helix-containing-greek-keys-development-specific-ca-2-binding-protein-s-6943/)

nmrlearner 08-22-2010 03:33 AM

Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S.
 
Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S. 1H, 15N, and 13C assignments and secondary structure determined with the use of multidimensional double and triple resonance heteronuclear NMR spectroscopy.

Related Articles Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S. 1H, 15N, and 13C assignments and secondary structure determined with the use of multidimensional double and triple resonance heteronuclear NMR spectroscopy.

Biochemistry. 1994 Mar 8;33(9):2409-21

Authors: Bagby S, Harvey TS, Kay LE, Eagle SG, Inouye S, Ikura M

Multidimensional heteronuclear NMR spectroscopy has been used to determine almost complete backbone and side-chain 1H, 15N, and 13C resonance assignments of calcium loaded Myxococcus xanthus protein S (173 residues). Of the range of constant-time triple resonance experiments recorded, HNCACB and CBCA(CO)NH, which correlate C alpha and C beta with backbone amide resonances of the same and the succeeding residue respectively, proved particularly useful in resolving assignment ambiguities created by the 4-fold internal homology of the protein S amino acid sequence. Extensive side-chain 1H and 13C assignments have been obtained by analysis of HCCH-TOCSY and 15N-edited TOCSY-HMQC spectra. A combination of NOE, backbone amide proton exchange, 3JNH alpha coupling constant, and chemical shift data has been used to show that each of the protein S repeat units consists of four beta-strands in a Greek key arrangement. Two of the Greek keys contain a regular alpha-helix between the third and fourth strands, resulting in an unusual and possibly unique variation on this common folding motif. Despite similarity between two nine-residue stretches in the first and third domains of protein S and one of the Ca(2+)-binding sequences in bovine brain calmodulin [Inouye, S., Franceschini, T., & Inouye, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6829-6833], the protein S topology in these regions is incompatible with an EF-hand calmodulin-type Ca(2+)-binding site.

PMID: 8117701 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 09:50 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013