BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-15-2019, 07:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A unified heteronuclear decoupling picture in solid-state NMR under low radio-frequency amplitude and fast magic-angle-spinning frequency regime.

A unified heteronuclear decoupling picture in solid-state NMR under low radio-frequency amplitude and fast magic-angle-spinning frequency regime.

Related Articles A unified heteronuclear decoupling picture in solid-state NMR under low radio-frequency amplitude and fast magic-angle-spinning frequency regime.

J Chem Phys. 2019 Apr 14;150(14):144201

Authors: Sharma K, Equbal A, Nielsen NC, Madhu PK

Abstract
Heteronuclear spin decoupling is a highly important component of solid-state NMR experiments to remove undesired coupling interactions between unlike spins for spectral resolution. Recently, experiments using a unification strategy of standard decoupling schemes were presented for high radio-frequency (RF) amplitudes and slow-intermediate magic-angle-spinning (MAS) frequencies, in the pursuit of deeper understanding of spin decoupling under phase-modulated RF irradiation [A. Equbal et al., J. Chem. Phys. 142, 184201 (2015)]. The approach, unified two-pulse heteronuclear decoupling (UTPD), incorporates the simultaneous time- and phase-modulation strategies, commonly used in solid-state NMR. Here, the UTPD based decoupling scheme is extended to the experimentally increasingly important regime of low RF amplitudes and fast MAS frequencies. The unified decoupling approach becomes increasingly effective in identifying the deleterious dipole-dipole and, in particular, J recoupling conditions which become critical for the low-amplitude RF regime. This is because J coupling is isotropic and therefore not averaged out by sample spinning unlike the anisotropic dipole-dipole coupling. Numerical simulations and analytic theory are used to understand the effects of various nuclear spin interactions on the decoupling performance of UTPD, in particular, the crucial difference between the low-phase and high-phase UTPD conditions with respect to J coupling. In the UTPD scheme, when the cycle-frequency of the pulse-sequence is comparable to the RF nutation frequency, the existence of a non-zero effective rotation in the basic two-pulse scheme becomes an essential feature for the efficient and robust averaging out of the scalar J coupling. This broad viewpoint is expected to bring different optimum low-power decoupling pulse schemes under a common footing.


PMID: 30981235 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Publisher's Note: "Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR" [J. Chem. Phys. 146, 084202 (2017)].
Publisher's Note: "Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR" . Related Articles Publisher's Note: "Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR" . J Chem Phys. 2017 Apr 07;146(13):139901 Authors: Equbal A, Madhu PK, Meier BH, Nielsen NC, Ernst M, Agarwal V PMID: 28390378
nmrlearner Journal club 0 04-10-2017 12:59 PM
[NMR paper] Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR.
Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--link.aip.org-jhtml-linkto.gif Related Articles Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR. J Chem Phys. 2017 Feb 28;146(8):084202 Authors: Equbal A, Madhu PK, Meier BH, Nielsen NC, Ernst M, Agarwal V Abstract Major advances have recently been made in the field of heteronuclear dipolar decoupling in...
nmrlearner Journal club 0 03-03-2017 10:56 PM
[NMR paper] Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis.
Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis. Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis. J Magn Reson. 2016 Jan 6;263:55-64 Authors: Equbal A, Leskes M, Nielsen NC, Madhu PK, Vega S Abstract We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar...
nmrlearner Journal club 0 01-17-2016 12:06 PM
[NMR paper] A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy.
A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy. Related Articles A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy. J Chem Phys. 2015 May 14;142(18):184201 Authors: Equbal A, Bjerring M, Madhu PK, Nielsen NC Abstract A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like...
nmrlearner Journal club 0 05-17-2015 03:52 PM
Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and H Detection
From The DNP-NMR Blog: Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and H Detection Su, Y., L. Andreas, and R.G. Griffin, Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and H Detection. Annu Rev Biochem, 2015. http://www.ncbi.nlm.nih.gov/pubmed/25839340
nmrlearner News from NMR blogs 0 04-17-2015 08:49 PM
[NMR paper] Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and (1)H Detection.
Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and (1)H Detection. Magic Angle Spinning NMR of Proteins: High-Frequency Dynamic Nuclear Polarization and (1)H Detection. Annu Rev Biochem. 2015 Mar 30; Authors: Su Y, Andreas L, Griffin RG Abstract Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and...
nmrlearner Journal club 0 04-04-2015 05:31 PM
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson. 2011 Mar 17; Authors: Traaseth NJ, Veglia G We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR...
nmrlearner Journal club 0 04-13-2011 11:57 PM
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 March 2011</br> Nathaniel J., Traaseth , Gianluigi, Veglia</br> We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and...
nmrlearner Journal club 0 03-18-2011 06:43 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:23 PM.


Map