BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 10:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interac

Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions.

Related Articles Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions.

J Magn Reson. 2004 Nov;171(1):163-70

Authors: Shrot Y, Shapira B, Frydman L

A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is found that when dealing with 2D NMR experiments involving a t1 amplitude-modulation of the spin evolution, such continuous encoding scheme presents a number of advantages over alternatives employing discrete excitation pulses. From an experimental standpoint this is mainly reflected by the use of a single pair of bipolar gradients during the course of the indirect-domain encoding, as opposed to the numerous (and more intense) gradient echoes required so far. In terms of the spectral outcome, main advantages of the continuous spatial encoding scheme are the avoidance of "ghost peaks" and of "enveloping effects" associated to the discrete excitation mode. The principles underlying this new spatial encoding protocol are derived, and its applicability is demonstrated with homo- and heteronuclear 2D ultrafast NMR applications on small molecule and on protein samples.

PMID: 15504696 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Monitoring Mechanistic Details in the Synthesis of Pyrimidines via Real-Time, Ultrafast Multidimensional NMR Spectroscopy
Monitoring Mechanistic Details in the Synthesis of Pyrimidines via Real-Time, Ultrafast Multidimensional NMR Spectroscopy Zulay D. Pardo, Gregory L. Olsen, Mari?a Encarnacio?n Ferna?ndez-Valle, Lucio Frydman, Roberto Marti?nez-A?lvarez and Antonio Herrera http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210154g/aop/images/medium/ja-2011-10154g_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja210154g http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/tEFGGh16-DU
nmrlearner Journal club 0 01-28-2012 05:27 AM
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme. J Magn Reson. 2011 Aug 30; Authors: Qiang W Abstract We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the...
nmrlearner Journal club 0 09-21-2011 03:31 PM
Continuous-wave EPR at 275 GHz: Application to high-spin Fe3+ systems
Continuous-wave EPR at 275 GHz: Application to high-spin Fe3+ systems Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 11 March 2011</br> G., Mathies , H., Blok , J.A.J.M., Disselhorst , P., Gast , H., van der Meer , ...</br> The 275 GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated...
nmrlearner Journal club 0 03-12-2011 05:21 PM
[NMR paper] Line shape considerations in ultrafast 2D NMR.
Line shape considerations in ultrafast 2D NMR. Related Articles Line shape considerations in ultrafast 2D NMR. J Magn Reson. 2004 Feb;166(2):152-63 Authors: Shapira B, Lupulescu A, Shrot Y, Frydman L We have recently proposed and demonstrated an approach that enables the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan. The approach is based on spatially encoding the spins' evolution along the indirect domain with the aid of a magnetic field gradient, and subsequently decoding this information numerous times over...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[Stan NMR blog] Continuous Inverse Laplace Transform with UpenWin
Continuous Inverse Laplace Transform with UpenWin A new commercial software package for continuous ILT More...
nmrlearner News from NMR blogs 0 08-21-2010 05:42 PM
2D Ultrafast NMR Spectroscopy Explained - Part 1
2D Ultrafast NMR Spectroscopy Explained - Part 1 http://i.ytimg.com/vi/N86XJ5FsLJE/default.jpg 2D Ultrafast NMR Spectroscopy Explained - Part 1 Ultrafast 2D Spectroscopy explained, part 1 From: FrydmanGroup Views: 3685 http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif 5 ratings
nmrlearner NMR educational videos 0 08-18-2010 01:38 AM
MathNMR: Mathematica package for spin and spatial tensor manipulations
MathNMR: Mathematica package for spin and spatial tensor manipulations http://www.nyu.edu/projects/jerschow/graphical_commutator.png Spin and spatial tensor manipulations are frequently required to describe and the theory of NMR experiments. This is a Mathematica package, which provides some of the most common functions for these calculations. Examples are the calculation of matrix representations of operators, commutators, projections, rotations, Redfield matrix elements, matrix decomposition into basis operators, change of basis, coherence filtering, and the manipulation of...
nmrlearner NMR software 2 08-08-2007 04:54 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:31 PM.


Map