BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-03-2013, 10:13 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for structure and dynamics

Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for structure and dynamics

March 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 216



High resolution proton spectra are obtained in MAS solid-state NMR in case samples are prepared using perdeuterated protein and D2O in the recrystallization buffer. Deuteration reduces drastically 1H, 1H dipolar interactions and allows to obtain amide proton line widths on the order of 20 Hz. Similarly, high-resolution proton spectra of aliphatic groups can be obtained if specifically labeled precursors for biosynthesis of methyl containing side chains are used, or if limited amounts of H2O in the bacterial growth medium is employed. This review summarizes recent spectroscopic developments to access structure and dynamics of biomacromolecules in the solid-state, and shows a number of applications to amyloid fibrils and membrane proteins.
Graphical abstract







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High resolution methyl selective 13C-NMR of proteins in solution and solid state
High resolution methyl selective 13C-NMR of proteins in solution and solid state Abstract New 13C-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the 13C-methyl nucleus and its directly attached 13C spin in a molecule. In proteins such correlations edit the 13C-resonances of different methyl containing residues into distinct spectral regions...
nmrlearner Journal club 0 07-13-2012 10:46 PM
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for structure and dynamics
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for structure and dynamics Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 216</br> Bernd Reif</br> High resolution proton spectra are obtained in MAS solid-state NMR in case samples are prepared using perdeuterated protein and D2O in the recrystallization buffer. Deuteration reduces drastically 1H, 1H dipolar interactions and allows to obtain amide proton line widths on the order of 20 Hz. Similarly, high-resolution proton spectra of aliphatic groups can be obtained...
nmrlearner Journal club 0 03-13-2012 03:33 PM
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for Structure and Dynamics
Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: Implications for Structure and Dynamics Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 5 January 2012</br> Bernd*Reif</br> http://www.sciencedirect.com/cache/MiamiImageURL/1-s2.0-S1090780711005969-fx1.sml</br></br></br> Source: Journal of Magnetic Resonance
nmrlearner Journal club 0 01-07-2012 03:12 PM
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins
Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins Abstract Well-resolved 2Hâ??13C correlation spectra, reminiscent of 1Hâ??13C correlations, are obtained for perdeuterated ubiquitin and for perdeuterated outer-membrane protein G (OmpG) from E. coli by exploiting the favorable lifetime of 2H double-quantum (DQ) states. Sufficient signal-to-noise was achieved due to the short deuterium T 1, allowing for high repetition rates and enabling 3D experiments with a 2Hâ??13C transfer step in a reasonable time....
nmrlearner Journal club 0 11-01-2011 01:52 AM
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR. 2011 Sep 22; Authors: Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular...
nmrlearner Journal club 0 09-23-2011 05:30 PM
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field
High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field Abstract Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Protein structure determination by high-resolution solid-state NMR spectroscopy: appl
Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. Related Articles Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc. 2005 Jun 22;127(24):8618-26 Authors: Zech SG, Wand AJ, McDermott AE High-resolution solid-state NMR spectroscopy has become a promising method for the determination of three-dimensional protein structures for systems which are difficult to crystallize or exhibit low...
nmrlearner Journal club 0 11-25-2010 08:21 PM
High Resolution 1H Detected 1H,13C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective 1H,2H Isotopic Labeling of Methyl Groups
High Resolution <SUP>1</SUP>H Detected <SUP>1</SUP>H,<SUP>13</SUP>C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective <SUP>1</SUP>H,<SUP>2</SUP>H Isotopic Labeling of Methyl Groups Vipin Agarwal, Anne Diehl, Nikolai Skrynnikov, and Bernd Reif J. Am. Chem. Soc.; 2006; 128(39) pp 12620 - 12621; Abstract: MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme...
administrator Solid-state high-res. NMR 1 08-05-2009 03:21 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:52 PM.


Map