BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-19-2016, 07:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Tryptophan-Rich Sensory Protein/Translocator Protein(TSPO) from Cyanobacterium Fremyella diplosiphon Bindsa Broad Range of Functionally Relevant Tetrapyrroles

Tryptophan-Rich Sensory Protein/Translocator Protein(TSPO) from Cyanobacterium Fremyella diplosiphon Bindsa Broad Range of Functionally Relevant Tetrapyrroles



Biochemistry
DOI: 10.1021/acs.biochem.6b01019



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Recent excitements in protein NMR: Large proteins and biologically relevant dynamics.
Recent excitements in protein NMR: Large proteins and biologically relevant dynamics. Related Articles Recent excitements in protein NMR: Large proteins and biologically relevant dynamics. J Biosci. 2016 Dec;41(4):787-803 Authors: Chiliveri SC, Deshmukh MV Abstract The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (approx. 20 kDa) in de novo structure determination of proteins. The utility of these techniques...
nmrlearner Journal club 0 12-15-2016 06:49 PM
Translocator Protein 18 kDa (TSPO): An Old Proteinwith New Functions?
Translocator Protein 18 kDa (TSPO): An Old Proteinwith New Functions? http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00142/20160509/images/medium/bi-2016-00142k_0009.gif Biochemistry DOI: 10.1021/acs.biochem.6b00142 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/l_8dplFAYho More...
nmrlearner Journal club 0 05-10-2016 04:13 AM
[NMR paper] Solution NMR Spectroscopy Provides an Avenue for the Study of Functionally Dynamic Molecular Machines: The Example of Protein Disaggregation.
Solution NMR Spectroscopy Provides an Avenue for the Study of Functionally Dynamic Molecular Machines: The Example of Protein Disaggregation. Solution NMR Spectroscopy Provides an Avenue for the Study of Functionally Dynamic Molecular Machines: The Example of Protein Disaggregation. J Am Chem Soc. 2015 Dec 11; Authors: Rosenzweig R, Kay LE Abstract Solution-based NMR spectroscopy has been an important tool for studying the structure and dynamics of relatively small proteins and protein complexes with aggregate molecular masses...
nmrlearner Journal club 0 12-15-2015 08:09 PM
[NMR paper] Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin.
Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin. Related Articles Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin. J Magn Reson. 2014 Dec 26; Authors: Ward ME, Brown LS, Ladizhansky V Abstract Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state...
nmrlearner Journal club 0 02-01-2015 08:50 PM
[NMR paper] Advanced Solid-State NMR Techniques for Characterization of Membrane Protein Structure and Dynamics: Application to Anabaena Sensory Rhodopsin
Advanced Solid-State NMR Techniques for Characterization of Membrane Protein Structure and Dynamics: Application to Anabaena Sensory Rhodopsin Publication date: Available online 26 December 2014 Source:Journal of Magnetic Resonance</br> Author(s): Meaghan E. Ward , Leonid S. Brown , Vladimir Ladizhansky</br> Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past...
nmrlearner Journal club 0 12-27-2014 03:04 AM
[NMR paper] Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints. Related Articles Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol. 2014 Feb;24C:45-53 Authors: Hass MA, Ubbink M Abstract Paramagnetic NMR spectroscopy has evolved rapidly in the last decade, and has shown to be a very useful tool for solving structures of protein-protein complexes. A major breakthrough has been the development of...
nmrlearner Journal club 0 04-12-2014 06:36 PM
[NMR paper] Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR.
Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR. Related Articles Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR. J Am Chem Soc. 2014 Jan 27; Authors: Good DB, Wang S, Ward ME, Struppe JO, Brown LS, Lewandowski JR, Ladizhansky V Abstract The ability to detect and characterize molecular motions represents one of the unique strengths of Nuclear Magnetic Resonance (NMR) spectroscopy. In this study we...
nmrlearner Journal club 0 01-29-2014 02:01 PM
[NMR paper] Combining inducible protein overexpression with NMR-grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120.
Combining inducible protein overexpression with NMR-grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Related Articles Combining inducible protein overexpression with NMR-grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Biotechniques. 2005 Sep;39(3):405-11 Authors: Desplancq D, Bernard C, Sibler AP, Kieffer B, Miguet L, Potier N, Van Dorsselaer A, Weiss E The difficulty and expense of preparing protein samples highly enriched in stable isotopes is a bottleneck for structural studies by nuclear...
nmrlearner Journal club 0 12-01-2010 06:56 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:08 AM.


Map