BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 08:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 21,480
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default TROSY-NMR studies of the 91kDa TRAP protein reveal allosteric control of a gene regul

TROSY-NMR studies of the 91kDa TRAP protein reveal allosteric control of a gene regulatory protein by ligand-altered flexibility.

Related Articles TROSY-NMR studies of the 91kDa TRAP protein reveal allosteric control of a gene regulatory protein by ligand-altered flexibility.

J Mol Biol. 2002 Oct 25;323(3):463-73

Authors: McElroy C, Manfredo A, Wendt A, Gollnick P, Foster M

The tryptophan biosynthesis genes of several Bacilli are controlled through terminator/anti-terminator transcriptional attenuation. This process is regulated by tryptophan-dependent binding of the trp RNA-binding attenuation protein (TRAP) to the leader region of the trp operon mRNA, precluding formation of the antiterminator RNA hairpin, and allowing formation of the less stable terminator hairpin. Crystal structures are available of TRAP in complex with tryptophan and in ternary complex with tryptophan and RNA. However, no structure of TRAP in the absence of tryptophan is available; thus, the mechanism of allostery remains unclear. We have used transverse relaxation optimized spectroscopy (TROSY)-based NMR experiments to study the mechanism of ligand-mediated allosteric regulation in the 90.6kDa 11-mer TRAP. By recording a series of two-dimensional 15N-edited TROSY NMR spectra of TRAP from the thermophile Bacillus stearothermophilus over an extended range of temperatures, we have found tryptophan binding to be temperature-dependent, in agreement with the previously observed temperature-dependent RNA binding. Triple-resonance TROSY-based NMR spectra recorded at 55 degrees C have allowed us to obtain backbone resonance assignments for uniformly 2H,13C,15N-labeled TRAP in the inactive form and in the active form (free and bound to tryptophan). On the basis of ligand-dependent differential line-broadening and chemical shift perturbations, coupled with the results of proteolytic sensitivity measurements, we infer that tryptophan-modulated protein flexibility (dynamics) plays a central role in TRAP function by altering its RNA-binding affinity. Furthermore, because the crystal structures show that the ligand is buried completely in the bound state, we speculate that such dynamic behavior may be important to enable rapid response to changes in intracellular tryptophan levels. Thus, we propose that allosteric control of TRAP is accomplished by ligand-altered protein dynamics.

PMID: 12381302 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR, biophysical and biochemical studies reveal the minimal calmodulin-binding domain of the HIV-1 matrix protein.
NMR, biophysical and biochemical studies reveal the minimal calmodulin-binding domain of the HIV-1 matrix protein. NMR, biophysical and biochemical studies reveal the minimal calmodulin-binding domain of the HIV-1 matrix protein. J Biol Chem. 2011 Jul 28; Authors: Samal AB, Ghanam RH, Fernandez TF, Monroe EB, Saad JS Subcellular distribution of Calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1) infected cells is distinct from that observed in uninfected cells. CaM has been shown to interact and co-localize with the HIV-1 Gag protein...
nmrlearner Journal club 0 07-30-2011 11:23 AM
[NMR paper] Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors.
Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors. Related Articles Strategies for the NMR-based identification and optimization of allosteric protein kinase inhibitors. Chembiochem. 2005 Sep;6(9):1607-10 Authors: Jahnke W, Blommers MJ, FernŠndez C, Zwingelstein C, Amstutz R
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyas
NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system. Related Articles NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system. Biochemistry. 2004 Jul 6;43(26):8322-32 Authors: Di Lello P, Benison GC, Valafar H, Pitts KE, Summers AO, Legault P, Omichinski JG Mercury resistant bacteria have developed a system of two enzymes (MerA and MerB), which allows them to efficiently...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Insights into tyrosine phosphorylation control of protein-protein association from th
Insights into tyrosine phosphorylation control of protein-protein association from the NMR structure of a band 3 peptide inhibitor bound to glyceraldehyde-3-phosphate dehydrogenase. Related Articles Insights into tyrosine phosphorylation control of protein-protein association from the NMR structure of a band 3 peptide inhibitor bound to glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 1998 Jan 20;37(3):867-77 Authors: Eisenmesser EZ, Post CB A protein-protein association regulated by phosphorylation of tyrosine is examined by NMR...
nmrlearner Journal club 0 11-17-2010 11:06 PM
Real-time NMR Studies of the Folding & Mechanisms of Protein Quality Control Machiner
Real-time NMR Studies of the Folding & Mechanisms of Protein Quality Control Machineries * In the context of a project funded by European Research Council, two postdoctoral positions are available at the Structural Biology Institute in Grenoble (France) to study by real-time NMR the Folding & Mechanisms of Protein Quality Control (PQC) Machineries. Selected candidates will use latest NMR technologies developed at IBS to characterize self-assembly and functionally important structural rearrangements of large PQC machineries isolated at IBS. * The laboratory host… More...
nmrlearner Job marketplace 0 09-11-2010 01:25 AM
[NMR paper] NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal g
NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. Biochemistry. 1997 Mar 25;36(12):3448-57 Authors: Evenäs J, Thulin E, Malmendal A, Forsén S, Carlström G In the present investigation, the Ca2+...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora
Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Related Articles Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Biochem Genet. 1991 Oct;29(9-10):447-59 Authors: Young JL, Marzluf GA In Neurospora crassa, the expression of unlinked structural genes which encode nitrogen catabolic enzymes is subject to genetic and metabolic regulation. The negative-acting nmr regulatory gene...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora
Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Related Articles Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Biochem Genet. 1991 Oct;29(9-10):447-59 Authors: Young JL, Marzluf GA In Neurospora crassa, the expression of unlinked structural genes which encode nitrogen catabolic enzymes is subject to genetic and metabolic regulation. The negative-acting nmr regulatory gene...
nmrlearner Journal club 0 08-21-2010 11:12 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:54 AM.


Map