BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-03-2011, 07:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Addendum to the paper “Dead-time free measurement of dipole–dipole interactions between electron spins” by M. Pannier, S. Veit, A. Godt, G. Jeschke, and H.W. Spiess [J. Magn. Reson. 142 (2000) 331–340]

Addendum to the paper “Dead-time free measurement of dipole–dipole interactions between electron spins” by M. Pannier, S. Veit, A. Godt, G. Jeschke, and H.W. Spiess [J. Magn. Reson. 142 (2000) 331–340]


Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Corrected Proof, Available online 3 September 2011

Hans Wolfgang, Spiess

The development of four-pulse DEER as described, which has been published in the Journal of Magnetic Resonance more than 10 years ago. The corresponding paper is an example where a slight advance, such as adding a refocusing pulse, which in retrospect looks so simple, can have a remarkable impact on an entire field of science. In our case it offered a simple way to exact measurements of distances between defined species in the nanometer range. The current applications are mainly in determining structures of proteins and nucleic acids.


Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of 15N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of 15N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR Abstract Magic-angle spinning solid-state NMR measurements of 15N longitudinal paramagnetic relaxation enhancements (PREs) in 13C,15N-labeled proteins modified with Cu2+-chelating tags can yield multiple long-range electron-nucleus distance restraints up to ~20 Ã? (Nadaud et al. in J Am Chem Soc 131:8108â??8120, 2009). Using the EDTA-Cu2+ K28C mutant of B1 immunoglobulin...
nmrlearner Journal club 0 08-13-2011 02:47 AM
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR.
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR. Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR. J Biomol NMR. 2011 Aug 9; Authors: Nadaud PS, Sengupta I, Helmus JJ, Jaroniec CP Magic-angle spinning solid-state NMR...
nmrlearner Journal club 0 08-10-2011 12:30 PM
[Stan NMR blog] Electron MR in Poland: a free collection of papers
Electron MR in Poland: a free collection of papers An open-access set of 50+ EPR papers published in 'Current Topics in Biophysics' Source: Stan blog library
nmrlearner News from NMR blogs 0 12-09-2010 10:44 PM
[NMR paper] Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N r
Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. Related Articles Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2001 Feb 7;123(5):967-75 Authors: Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE A new NMR experiment is presented for...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] The structure and dipole moment of globular proteins in solution and crystalline stat
The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Related Articles The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Biopolymers. 2001 Apr 5;58(4):398-409 Authors: Takashima S The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR
The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database. Related Articles The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database. Biophys Chem. 1999 Aug 30;80(3):153-63 Authors: Takashima S, Yamaoka K Electric birefringence measurements indicated the presence of a large permanent dipole moment in HU protein-DNA complex. In order to substantiate this observation, numerical computation of the dipole moment of HU protein homodimer was carried out by using NMR protein...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemica
Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an...
nmrlearner Journal club 0 08-22-2010 05:08 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:20 PM.


Map