BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-31-2017, 01:22 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds

Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds

Abstract

The application of metabolic precursors for selective stable isotope labeling of aromatic residues in cell-based protein overexpression has already resulted in numerous NMR probes to study the structural and dynamic characteristics of proteins. With anthranilic acid, we present the structurally simplest precursor for exclusive tryptophan side chain labeling. A synthetic route to 13C, 2H isotopologues allows the installation of isolated 13Câ??1H spin systems in the indole ring of tryptophan, representing a versatile tool to investigate side chain motion using relaxation-based experiments without the loss of magnetization due to strong 1JCC and weaker 2JCH scalar couplings, as well as dipolar interactions with remote hydrogens. In this article, we want to introduce this novel precursor in the context of hitherto existing techniques of in vivo aromatic residue labeling.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Increased resolution of aromatic cross peaks using alternate 13 C labeling and TROSY
Increased resolution of aromatic cross peaks using alternate 13 C labeling and TROSY Abstract For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the 1H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording 13C-dispersed NOESY spectra. However, the...
nmrlearner Journal club 0 05-10-2015 07:49 PM
[NMR images] 1D 1H, 2.0 mM, pH 7.4 spectrum for anthranilic acid, bmse000067
http://bmrb.protein.osaka-u.ac.jp/metabolomics/standards/anthranilic_acid/nmr/bmse000067/spectra_png/1H_2/00.png 7/06/2014 7:13:57 PM GMT 1D 1H, 2.0 mM, pH 7.4 spectrum for anthranilic acid, bmse000067 More...
nmrlearner NMR pictures 0 06-07-2014 07:12 PM
[NMR paper] NMR analysis of cross strand aromatic interactions in an 8 residue hairpin and a 14 residue three stranded ?-sheet peptide.
NMR analysis of cross strand aromatic interactions in an 8 residue hairpin and a 14 residue three stranded ?-sheet peptide. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles NMR analysis of cross strand aromatic interactions in an 8 residue hairpin and a 14 residue three stranded ?-sheet peptide. J Phys Chem B. 2012 Dec 13;116(49):14207-15 Authors: Sonti R, Rai R, Ragothama S, Balaram P Abstract Cross strand aromatic interactions between a facing pair of...
nmrlearner Journal club 0 06-13-2013 06:14 PM
[NMR paper] pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR.
pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR. Related Articles pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR. Biophys J. 2013 Apr 16;104(8):1698-708 Authors: Williams JK, Zhang Y, Schmidt-Rohr K, Hong M Abstract The M2 protein of the influenza virus conducts protons into the virion under external acidic pH. The proton selectivity of...
nmrlearner Journal club 0 04-23-2013 08:37 PM
High-Resolution Zero-Field NMR J-Spectroscopyof Aromatic Compounds
High-Resolution Zero-Field NMR J-Spectroscopyof Aromatic Compounds John W. Blanchard, Micah P. Ledbetter, Thomas Theis, Mark C. Butler, Dmitry Budker and Alexander Pines http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja312239v/aop/images/medium/ja-2012-12239v_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja312239v http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/JnJRR_YbZhQ
nmrlearner Journal club 0 02-27-2013 06:45 AM
Alternative SAIL-Trp for robust aromatic signal assignment and determination of the Ï?2 conformation by intra-residue NOEs
Alternative SAIL-Trp for robust aromatic signal assignment and determination of the Ï?2 conformation by intra-residue NOEs Abstract Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing -proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using...
nmrlearner Journal club 0 09-27-2011 07:04 AM
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues <div class="Abstract">Abstract In protein NMR spectroscopy the chemical shift provides important information for the assignment of residues and a first structural evaluation of dihedral angles. Furthermore, angular restraints are obtained from oriented samples by solution and solid-state NMR spectroscopic approaches. Whereas the anisotropy of chemical...
nmrlearner Journal club 0 01-09-2011 12:46 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:11 PM.


Map