BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 10:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Transient complexes of redox proteins: structural and dynamic details from NMR studie

Transient complexes of redox proteins: structural and dynamic details from NMR studies.

Related Articles Transient complexes of redox proteins: structural and dynamic details from NMR studies.

J Mol Recognit. 2004 Nov-Dec;17(6):524-39

Authors: Prudêncio M, Ubbink M

Redox proteins participate in many metabolic routes, in particular those related to energy conversion. Protein-protein complexes of redox proteins are characterized by a weak affinity and a short lifetime. Two-dimensional NMR spectroscopy has been applied to many redox protein complexes, providing a wealth of information about the process of complex formation, the nature of the interface and the dynamic properties of the complex. These studies have shown that some complexes are non-specific and exist as a dynamic ensemble of orientations while in other complexes the proteins assume a single orientation. The binding interface in these complexes consists of a small hydrophobic patch for specificity, surrounded by polar, uncharged residues that may enhance dissociation, and, in most complexes, a ring or patch of charged residues that enhances the association by electrostatic interactions. The entry and exit port of the electrons is located within the hydrophobic interaction site, ensuring rapid electron transfer from one redox centre to the next.

PMID: 15386621 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structural biology: Proteins in dynamic equilibrium - Nature.com
Structural biology: Proteins in dynamic equilibrium - Nature.com <img alt="" height="1" width="1" /> Structural biology: Proteins in dynamic equilibrium Nature.com Changes in global orientations of protein domains, or in the shape and size of molecular assemblies, are more difficult to characterize using NMR alone, ... Read here
nmrlearner Online News 0 12-23-2010 02:43 AM
Exploring the Structural Details of Cu(I) Binding to ?-Synuclein by NMR Spectroscopy.
Exploring the Structural Details of Cu(I) Binding to ?-Synuclein by NMR Spectroscopy. Exploring the Structural Details of Cu(I) Binding to ?-Synuclein by NMR Spectroscopy. J Am Chem Soc. 2010 Dec 15; Authors: Binolfi A, Valiente-Gabioud AA, Duran R, Zweckstetter M, Griesinger C, Fernandez CO The aggregation of ?-synuclein (AS) is selectively enhanced by copper in vitro, and the interaction is proposed to play a potential role in vivo. In this work, we report the structural, residue-specific characterization of Cu(I) binding to AS and demonstrate...
nmrlearner Journal club 0 12-17-2010 11:23 AM
Exploring the Structural Details of Cu(I) Binding to ?-Synuclein by NMR Spectroscopy
Exploring the Structural Details of Cu(I) Binding to ?-Synuclein by NMR Spectroscopy Andres Binolfi, Ariel A. Valiente-Gabioud, Rosario Duran, Markus Zweckstetter, Christian Griesinger and Claudio O. Fernandez http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107842f/aop/images/medium/ja-2010-07842f_0001.gif Journal of the American Chemical Society DOI: 10.1021/ja107842f http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/b4TqLrO3oG4
nmrlearner Journal club 0 12-16-2010 12:37 AM
[NMR paper] Complexes of photosynthetic redox proteins studied by NMR.
Complexes of photosynthetic redox proteins studied by NMR. Related Articles Complexes of photosynthetic redox proteins studied by NMR. Photosynth Res. 2004;81(3):277-87 Authors: Ubbink M In the photosynthetic redox chain, small electron transfer proteins shuttle electrons between the large membrane-associated redox complexes. Short-lived but specific protein:protein complexes are formed to enable fast electron transfer. Recent nuclear magnetic resonance (NMR) studies have elucidated the binding sites on plastocyanin, cytochrome c (6) and...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C
Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C-terminal region of putidaredoxin. Related Articles Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C-terminal region of putidaredoxin. Biochemistry. 1994 May 31;33(21):6433-41 Authors: Pochapsky TC, Ratnaswamy G, Patera A Putidaredoxin (Pdx) is a 106-residue Fe2S2 ferredoxin which acts as the physiological reductant and effector of cytochrome P-450cam. Pdx has two accessible oxidation states, Fe+3-Fe+3 (oxidized) and...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C
Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C-terminal region of putidaredoxin. Related Articles Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C-terminal region of putidaredoxin. Biochemistry. 1994 May 31;33(21):6433-41 Authors: Pochapsky TC, Ratnaswamy G, Patera A Putidaredoxin (Pdx) is a 106-residue Fe2S2 ferredoxin which acts as the physiological reductant and effector of cytochrome P-450cam. Pdx has two accessible oxidation states, Fe+3-Fe+3 (oxidized) and...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Dynamic properties of proteins from NMR spectroscopy.
Dynamic properties of proteins from NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Dynamic properties of proteins from NMR spectroscopy. Curr Opin Biotechnol. 1993 Aug;4(4):385-91 Authors: Palmer AG Two-dimensional proton-detected heteronuclear nuclear magnetic resonance spectroscopy has been used to measure 13C and 15N spin-relaxation rate constants for several proteins. Generalized order parameters and effective internal correlation times have been...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] Electrostatic recognition in redox copper proteins: a 1H NMR study of the protonation
Electrostatic recognition in redox copper proteins: a 1H NMR study of the protonation behavior of His 19 in oxidized and reduced Cu,Zn superoxide dismutase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Electrostatic recognition in redox copper proteins: a 1H NMR study of the protonation behavior of His 19 in oxidized and reduced Cu,Zn superoxide dismutase. Arch Biochem Biophys. 1993 Mar;301(2):244-50 Authors: Desideri A, Polticelli F, Falconi M, Sette M, Ciriolo MR, Paci M,...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:31 AM.


Map