BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default TOUCHSTONEX: protein structure prediction with sparse NMR data.

TOUCHSTONEX: protein structure prediction with sparse NMR data.

Related Articles TOUCHSTONEX: protein structure prediction with sparse NMR data.

Proteins. 2003 Nov 1;53(2):290-306

Authors: Li W, Zhang Y, Kihara D, Huang YJ, Zheng D, Montelione GT, Kolinski A, Skolnick J

TOUCHSTONEX, a new method for folding proteins that uses a small number of long-range contact restraints derived from NMR experimental NOE (nuclear Overhauser enhancement) data, is described. The method employs a new lattice-based, reduced model of proteins that explicitly represents C(alpha), C(beta), and the sidechain centers of mass. The force field consists of knowledge-based terms to produce protein-like behavior, including various short-range interactions, hydrogen bonding, and one-body, pairwise, and multibody long-range interactions. Contact restraints were incorporated into the force field as an NOE-specific pairwise potential. We evaluated the algorithm using a set of 125 proteins of various secondary structure types and lengths up to 174 residues. Using N/8 simulated, long-range sidechain contact restraints, where N is the number of residues, 108 proteins were folded to a C(alpha)-root-mean-square deviation (RMSD) from native below 6.5 A. The average RMSD of the lowest RMSD structures for all 125 proteins (folded and unfolded) was 4.4 A. The algorithm was also applied to limited experimental NOE data generated for three proteins. Using very few experimental sidechain contact restraints, and a small number of sidechain-main chain and main chain-main chain contact restraints, we folded all three proteins to low-to-medium resolution structures. The algorithm can be applied to the NMR structure determination process or other experimental methods that can provide tertiary restraint information, especially in the early stage of structure determination, when only limited data are available.

PMID: 14517980 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Al NMR: a novel NMR data processing program optimized for sparse sampling
Al NMR: a novel NMR data processing program optimized for sparse sampling Abstract Sparse sampling in biomolecular multidimensional NMR offers increased acquisition speed and resolution and, if appropriate conditions are met, an increase in sensitivity. Sparse sampling of indirectly detected time domains combined with the direct truly multidimensional Fourier transform has elicited particular attention because of the ability to generate a final spectrum amenable to traditional analysis techniques. A number of sparse sampling schemes have been described including radial sampling, random...
nmrlearner Journal club 0 11-17-2011 01:47 AM
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. J Am Chem Soc. 2011 Apr 4; Authors: Ryabov Y, Schwieters CD, Clore GM (15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner Journal club 0 04-06-2011 10:54 AM
Toward a Structure Determination Method for Biomineral-Associated Protein Using Combined Solid- State NMR and Computational Structure Prediction.
Toward a Structure Determination Method for Biomineral-Associated Protein Using Combined Solid- State NMR and Computational Structure Prediction. Related Articles Toward a Structure Determination Method for Biomineral-Associated Protein Using Combined Solid- State NMR and Computational Structure Prediction. Structure. 2010 Dec 8;18(12):1678-1687 Authors: Masica DL, Ash JT, Ndao M, Drobny GP, Gray JJ Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the...
nmrlearner Journal club 0 12-08-2010 06:21 PM
[NMR paper] Application of sparse NMR restraints to large-scale protein structure prediction.
Application of sparse NMR restraints to large-scale protein structure prediction. Related Articles Application of sparse NMR restraints to large-scale protein structure prediction. Biophys J. 2004 Aug;87(2):1241-8 Authors: Li W, Zhang Y, Skolnick J The protein structure prediction algorithm TOUCHSTONEX that uses sparse distance restraints derived from NMR nuclear Overhauser enhancement (NOE) data to predict protein structures at low-to-medium resolution was evaluated as follows: First, a representative benchmark set of the Protein Data Bank...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Structure prediction of protein complexes by an NMR-based protein docking algorithm.
Structure prediction of protein complexes by an NMR-based protein docking algorithm. Related Articles Structure prediction of protein complexes by an NMR-based protein docking algorithm. J Biomol NMR. 2001 May;20(1):15-21 Authors: Kohlbache O, Burchardt A, Moll A, Hildebrandt A, Bayer P, Lenhof HP Protein docking algorithms can be used to study the driving forces and reaction mechanisms of docking processes. They are also able to speed up the lengthy process of experimental structure elucidation of protein complexes by proposing potential...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] De novo protein structure determination using sparse NMR data.
De novo protein structure determination using sparse NMR data. Related Articles De novo protein structure determination using sparse NMR data. J Biomol NMR. 2000 Dec;18(4):311-8 Authors: Bowers PM, Strauss CE, Baker D We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models...
nmrlearner Journal club 0 11-19-2010 08:29 PM
Protein secondary structure prediction using NMR chemical shift data.
Protein secondary structure prediction using NMR chemical shift data. Related Articles Protein secondary structure prediction using NMR chemical shift data. J Bioinform Comput Biol. 2010 Oct;8(5):867-84 Authors: Zhao Y, Alipanahi B, Li SC, Li M Accurate determination of protein secondary structure from the chemical shift information is a key step for NMR tertiary structure determination. Relatively few work has been done on this subject. There needs to be a systematic investigation of algorithms that are (a) robust for large datasets; (b)...
nmrlearner Journal club 0 10-29-2010 07:05 PM
[NMR paper] A branch and bound algorithm for protein structure refinement from sparse NMR data se
A branch and bound algorithm for protein structure refinement from sparse NMR data sets. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A branch and bound algorithm for protein structure refinement from sparse NMR data sets. J Mol Biol. 1999 Jan 29;285(4):1691-710 Authors: Standley DM, Eyrich VA, Felts AK, Friesner RA, McDermott AE We describe new methods for predicting protein tertiary structures to low resolution given the specification of secondary structure and a...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:44 PM.


Map