BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End Binding Protein EB1 (http://www.bionmr.com/forum/journal-club-9/three-dimensional-structure-cap-gly-domain-mammalian-dynactin-determined-magic-angle-spinning-nmr-spectroscopy-conformational-plasticity-interactions-end-binding-protein-eb1-17997/)

nmrlearner 05-04-2013 06:54 AM

Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End Binding Protein EB1
 
Three-Dimensional Structure of CAP-Gly Domain of Mammalian Dynactin Determined by Magic Angle Spinning NMR Spectroscopy: Conformational Plasticity and Interactions with End Binding Protein EB1

Publication date: Available online 4 May 2013
Source:Journal of Molecular Biology</br>
Author(s): Si Yan , Guangjin Hou , Charles D. Schwieters , Shubbir Ahmed , John C. Williams , Tatyana Polenova</br>
Microtubules (MTs) and their associated proteins (MAPs) play important roles in vesicle and organelle transport, cell motility and cell division. Perturbation of these processes by mutation typically gives rise to severe pathological conditions. In our efforts to obtain atomic information on MAP/MT interactions with the goal to understand mechanisms that might potentially assist in the development of treatments for these diseases, we have determined the 3D structure of CAP-Gly domain of mammalian dynactin by MAS NMR spectroscopy. We observe two conformations in the ?2 strand encompassing residues T43-V44-A45, residues that are adjacent to the disease associated mutation, G59S. Upon binding of CAP-Gly to microtubule plus-end tracking protein EB1, the CAP-Gly shifts to a single conformer. We find extensive chemical shift perturbations in several stretches of residues of CAP-Gly upon binding to EB1, from which we define accurately the CAP-Gly/EB1 binding interface. We also observe that the loop regions may exhibit unique flexibility, especially in the GKNDG motif, which participates in the microtubule binding. This study in conjunction with our previous reports suggests that conformational plasticity is an intrinsic property of CAP-Gly likely due to its unusually high loop content and may be required for its biological functions.
Graphical abstract

http://origin-ars.els-cdn.com/conten...002751-fx1.jpg</br>
</br></br>

More...


All times are GMT. The time now is 07:10 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013