BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 11:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The three-dimensional structure of acyl-coenzyme A binding protein from bovine liver:

The three-dimensional structure of acyl-coenzyme A binding protein from bovine liver: structural refinement using heteronuclear multidimensional NMR spectroscopy.

Related Articles The three-dimensional structure of acyl-coenzyme A binding protein from bovine liver: structural refinement using heteronuclear multidimensional NMR spectroscopy.

J Biomol NMR. 1993 May;3(3):271-84

Authors: Andersen KV, Poulsen FM

The 3D structure of bovine recombinant acyl-coenzyme A binding protein has been determined using multidimensional heteronuclear magnetic resonance spectroscopy in a study that combines investigations of 15N-labeled and unlabeled protein. The present structure determination is a refinement of the structure previously determined (Andersen, K.V. and Poulsen, F.M. (1992) J. Mol. Biol., 226, 1131-1141). It is based on 1096 distance restraints and 124 dihedral angle restraints of which 69 are for phi-angles and 8 for chiral centers and 47 for prochiral centers. The new experimental input for the structure determination has provided an increase of 263 distance restraints, 5 phi-angle restraints, and 32 chi-angle restraints in 2 chiral centers, and 31 prochiral centers restraining an additional 23 chi 1, 8 chi 2, and 1 chi 3 angles. The increase of 300 distance and dihedral angle restraints representing an additional 30% of input parameters for the structure determination has been shown to be in agreement with the first structure. A set of 29 structures has been calculated and each of the structures has been compared to a mean structure to give an atomic root mean square deviation of 0.44 +/- 0.12 A (1 A is 0.1 nm) for the backbone atoms C, C alpha, and N in the four alpha-helices A1, residues 4-15, A2, residues 21-36, A3, residues 51-62 and A4, residues 65-84. The loop-region of residues Gly45-Lys50 could not be defined by the restraints obtained by NMR. The program PRONTO has been used for the spectrum analysis, assignment of the individual nuclear Overhauser effects, the integration of the cross peaks, and the measurement of the coupling constants. The programs DIANA, X-PLOR and INSIGHT have been used in the structure calculations and evaluations.

PMID: 8358232 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structure of an acyl-carrier protein from Borrelia burgdorferi.
NMR structure of an acyl-carrier protein from Borrelia burgdorferi. NMR structure of an acyl-carrier protein from Borrelia burgdorferi. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):1137-40 Authors: Barnwal RP, Van Voorhis WC, Varani G Abstract Nearly complete resonance assignment and the high-resolution NMR structure of the acyl-carrier protein from Borrelia burgdorferi, a target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure-determination pipeline, are reported. This protein...
nmrlearner Journal club 0 09-10-2011 06:51 PM
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Biochim Biophys Acta. 2011 Aug;1808(8):2019-30 Authors: Romo TD, Bradney LA, Greathouse DV, Grossfield A Abstract One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The...
nmrlearner Journal club 0 08-19-2011 02:56 PM
[NMR paper] Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies.
Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Related Articles Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Protein Expr Purif. 2006 Jan;45(1):99-106 Authors: Chen X, Tong X, Xie Y, Wang Y, Ma J, Gao D, Wu H, Chen H The human hepatitis B virus enhancer II...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C
Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study. Related Articles Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study. Biochemistry. 2001 Oct 23;40(42):12604-11 Authors: Beringhelli T, Goldoni L, Capaldi S, Bossi A, Perduca M, Monaco HL Two different groups of liver fatty acid-binding proteins (L-FABPs) are known: the mammalian type and the basic type. Very few members of this second group of L-FABPs have been...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Bound water in apo and holo bovine heart fatty-acid-binding protein determined by het
Bound water in apo and holo bovine heart fatty-acid-binding protein determined by heteronuclear NMR spectroscopy. Related Articles Bound water in apo and holo bovine heart fatty-acid-binding protein determined by heteronuclear NMR spectroscopy. Eur J Biochem. 1998 Feb 1;251(3):781-6 Authors: Mesgarzadeh A, Pfeiffer S, Engelke J, Lassen D, Rüterjans H Two- and three-dimensional heteronuclear NMR experiments have been performed to identify internally bound water molecules in the solution structure of bovine heart fatty-acid-binding protein...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] The substrate binding site of human liver cytochrome P450 2C9: an NMR study.
The substrate binding site of human liver cytochrome P450 2C9: an NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The substrate binding site of human liver cytochrome P450 2C9: an NMR study. Biochemistry. 1997 Oct 21;36(42):12672-82 Authors: Poli-Scaife S, Attias R, Dansette PM, Mansuy D Purified recombinant human liver cytochrome P450 2C9 was produced, from expression of the corresponding cDNA in yeast, in quantities large enough for UV-visible and 1H NMR experiments. Its...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Three-dimensional structure of bovine heart fatty-acid-binding protein with bound pal
Three-dimensional structure of bovine heart fatty-acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Three-dimensional structure of bovine heart fatty-acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. Eur J Biochem. 1995 May 15;230(1):266-80 Authors: Lassen D, Lücke C, Kveder M, Mesgarzadeh A, Schmidt JM,...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Three-dimensional structure of the FK506 binding protein/ascomycin complex in solutio
Three-dimensional structure of the FK506 binding protein/ascomycin complex in solution by heteronuclear three- and four-dimensional NMR. Related Articles Three-dimensional structure of the FK506 binding protein/ascomycin complex in solution by heteronuclear three- and four-dimensional NMR. Biochemistry. 1993 Jan 26;32(3):754-65 Authors: Meadows RP, Nettesheim DG, Xu RX, Olejniczak ET, Petros AM, Holzman TF, Severin J, Gubbins E, Smith H, Fesik SW A high-resolution three-dimensional solution structure of the FKBP/ascomycin complex has been...
nmrlearner Journal club 0 08-21-2010 11:53 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:40 AM.


Map