BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-

Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics.

Related Articles Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG superfamily member, using NMR restraints and Monte Carlo dynamics.

Protein Eng. 2001 Oct;14(10):717-21

Authors: Bujnicki JM, Rotkiewicz P, Kolinski A, Rychlewski L

Using a recent version of the SICHO algorithm for in silico protein folding, we made a blind prediction of the tertiary structure of the N-terminal, independently folded, catalytic domain (CD) of the I-TevI homing endonuclease, a representative of the GIY-YIG superfamily of homing endonucleases. The secondary structure of the I-TevI CD has been determined using NMR spectroscopy, but computational sequence analysis failed to detect any protein of known tertiary structure related to the GIY-YIG nucleases (Kowalski et al., Nucleic Acids Res., 1999, 27, 2115-2125). To provide further insight into the structure-function relationships of all GIY-YIG superfamily members, including the recently described subfamily of type II restriction enzymes (Bujnicki et al., Trends Biochem. Sci., 2000, 26, 9-11), we incorporated the experimentally determined and predicted secondary and tertiary restraints in a reduced (side chain only) protein model, which was minimized by Monte Carlo dynamics and simulated annealing. The subsequently elaborated full atomic model of the I-TevI CD allows the available experimental data to be put into a structural context and suggests that the GIY-YIG domain may dimerize in order to bring together the conserved residues of the active site.

PMID: 11739889 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis Abstract The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation, rigorous enzymatic assays of isomerization are required. However, most measures of isomerase activity require significant constraints on substrate sequence and only yield rate constants for the cis isomer, kcatcis and apparent Michaelis constants, ...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. J Biomol NMR. 2011 Sep;51(1-2):21-34 Authors: Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK Abstract The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation,...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. J Biomol NMR. 2011 Sep;51(1-2):21-34 Authors: Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK Abstract The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation,...
nmrlearner Journal club 0 09-30-2011 05:59 AM
Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy (†).
Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy (†). Development of Non-Peptide Ligands of Growth Factor Receptor-Bound Protein 2-Src Homology 2 Domain Using Molecular Modeling and NMR Spectroscopy (†). J Med Chem. 2011 Jan 27; Authors: Orcajo-Rinco?n AL, Ortega-Gutie?rrez S, Serrano P, Torrecillas IR, Wu?thrich K, Campillo M, Pardo L, Viso A, Benhamu? B, Lo?pez-Rodri?guez ML We report a novel series of non-peptide ligands that inhibit the growth...
nmrlearner Journal club 0 01-29-2011 12:35 PM
[NMR paper] NMR backbone assignment of a protein kinase catalytic domain by a combination of seve
NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Related Articles NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Chembiochem. 2004 Nov 5;5(11):1508-16 Authors: Langer T, Vogtherr M, Elshorst B, Betz M, Schieborr U, Saxena K, Schwalbe H Protein phosphorylation is one of the most important mechanisms...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9. Related Articles NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9. Protein Sci. 1999 Aug;8(8):1711-3 Authors: Hannan JP, Whittaker SB, Davy SL, Kühlmann UC, Pommer AJ, Hemmings AM, James R, Kleanthous C, Moore GR Ni2+ affinity columns are widely used for protein purification, but they carry the risk that Ni2+ ions may bind to the protein, either adventitiously or at a physiologically important site. Dialysis against ethylenediaminetetraacetic acid...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Three-dimensional structure of the DNA-binding domain of the fructose repressor from
Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. J Mol Biol. 1997 Jul 18;270(3):496-510 Authors: Penin F, Geourjon C, Montserret R, Böckmann A, Lesage A, Yang YS, Bonod-Bidaud C, Cortay JC, Nègre D, Cozzone AJ, Deléage G FruR is...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spec
Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spectrometry, site-directed mutagenesis and kinetic studies for an inherent phosphatase activity. Related Articles Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spectrometry, site-directed mutagenesis and kinetic studies for an inherent phosphatase activity. Biochemistry. 1995 Nov 21;34(46):15351-8 Authors: Boerner RJ, Consler TG, Gampe RT, Weigl D, Willard DH, Davis DG, Edison AM, Loganzo F, Kassel DB, Xu RX During solution...
nmrlearner Journal club 0 08-22-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:21 PM.


Map