BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rating: Thread Rating: 1 votes, 5.00 average. Display Modes
  #1  
Unread 07-23-2013, 09:52 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

Related Articles Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

Biochim Biophys Acta. 2013 Jul 16;

Authors: Létourneau D, Lorin A, Lefebvre A, Cabana J, Lavigne P, Lehoux JG

Abstract
STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7?-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA> CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligands chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.


PMID: 23872533 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies.
STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies. Mol Cell Endocrinol. 2013 Jan 19; Authors: Létourneau D, Lefebvre A, Lavigne P, Lehoux JG Abstract We present herein a review of our recent results on the characterization of the binding sites of STARD1, STARD5 and STARD6 using NMR and other biophysical...
nmrlearner Journal club 0 02-03-2013 10:19 AM
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy Abstract Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR...
nmrlearner Journal club 0 12-22-2011 06:50 AM
Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis.
Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis. Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):1148-53 Authors: Buchko GW, Hewitt SN, Napuli AJ, Van Voorhis WC, Myler PJ Abstract Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains,...
nmrlearner Journal club 0 09-10-2011 06:51 PM
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase.
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase. Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase. Bioorg Med Chem. 2010 Dec 15;18(24):8485-92 Authors: Batruch I, Javasky E, Brown ED, Organ MG, Johnson PE Isothermal titration calorimetry (ITC) was used to determine the thermodynamic driving force for inhibitor binding to the enzyme dihydrofolate reductase (DHFR) from Escherichia coli. 1,4-Bis-{sulfanylmethyl}-3,6-dimethyl-benzene (1) binds DHFR:NADPH with a K(d) of 13±5 nM while the...
nmrlearner Journal club 0 03-09-2011 02:20 PM
Residual interactions in unfolded bile acid-binding protein by (19) F NMR.
Residual interactions in unfolded bile acid-binding protein by (19) F NMR. Residual interactions in unfolded bile acid-binding protein by (19) F NMR. Protein Sci. 2011 Feb;20(2):327-35 Authors: Basehore HK, Ropson IJ The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19) F NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak...
nmrlearner Journal club 0 02-02-2011 02:40 AM
[NMR paper] Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR.
Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. Related Articles Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. Biochemistry. 2005 Aug 2;44(30):10153-63 Authors: Mishima M, Shida T, Yabuki K, Kato K, Sekiguchi J, Kojima C Bacillus subtilis CwlC is a cell wall lytic N-acetylmuramoyl-l-alanine amidase that plays an...
nmrlearner Journal club 0 12-01-2010 06:56 PM
Residual interactions in unfolded bile acid-binding protein by (19)F-NMR.
Residual interactions in unfolded bile acid-binding protein by (19)F-NMR. Related Articles Residual interactions in unfolded bile acid-binding protein by (19)F-NMR. Protein Sci. 2010 Nov 29; Authors: Basehore HK, Ropson IJ The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19)F-NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak assignments...
nmrlearner Journal club 0 12-01-2010 04:41 PM
[NMR paper] Identification of the bile acid-binding site of the ileal lipid-binding protein by ph
Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure. Related Articles Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure. J Biol Chem. 2001 Mar 9;276(10):7291-301 Authors: Kramer W, Sauber K, Baringhaus KH, Kurz M, Stengelin S, Lange G, Corsiero D, Girbig F, König W, Weyland C ...
nmrlearner Journal club 0 11-19-2010 08:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:15 PM.


Map