BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:41 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Theory and application of the maximum likelihood principle to NMR parameter estimatio

Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data.

Related Articles Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data.

J Biomol NMR. 1995 Apr;5(3):245-58

Authors: Chylla RA, Markley JL

A general theory has been developed for the application of the maximum likelihood (ML) principle to the estimation of NMR parameters (frequency and amplitudes) from multidimensional time-domain NMR data. A computer program (ChiFit) has been written that carries out ML parameter estimation in the D-1 indirectly detected dimensions of a D-dimensional NMR data set. The performance of this algorithm has been tested with experimental three-dimensional (HNCO) and four-dimensional (HN(CO)-CAHA) data from a small protein labeled with 13C and 15N. These data sets, with different levels of digital resolution, were processed using ChiFit for ML analysis and employing conventional Fourier transform methods with prior extrapolation of the time-domain dimensions by linear prediction. Comparison of the results indicates that the ML approach provides superior frequency resolution compared to conventional methods, particularly under conditions of limited digital resolution in the time-domain input data, as is characteristic of D-dimensional NMR data of biomolecules. Close correspondence is demonstrated between the results of analyzing multidimensional time-domain NMR data by Fourier transformation, Bayesian probability theory [Chylla, R.A. and Markley, J.L. (1993) J. Biomol. NMR, 3, 515-533], and the ML principle.

PMID: 7787422 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMRpipe Yahoo group] How to collapse multiplets into singlets by Maximum entropy algorith
How to collapse multiplets into singlets by Maximum entropy algorith Hi, Recently, I ran a 3D HCC-TOCSY experiment on a uniformly 13C labeled sample. Therefore, all peaks are split due to carbon-carbon coupling. The paper More...
NMRpipe Yahoo group news News from other NMR forums 0 02-15-2012 03:40 AM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 30 December 2011</br> Claudio*Luchinat, Malini*Nagulapalli, Giacomo*Parigi, Luca*Sgheri</br> Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively...
nmrlearner Journal club 0 12-31-2011 10:40 AM
[Question from NMRWiki Q&A forum] shake routine and ncon parameter
shake routine and ncon parameter Trying to do molecular dynamics with explicit water molecules I came across a problem with SHAKE routine: shake reference = parameters bonds (hydrogen) (all) tolerance = 1.0e-06 nconstraints=8000end and error message after this is: X-PLOR>shake SHAKE> reference = parameters SHAKE> bonds (hydrogen) (all) SELRPN: 7142 atoms have been selected out of 11032 SELRPN: 11032 atoms have been selected out of 11032 SHKSET: reference = parameters %XREFIN-ERR: allocation for SHAKE-constraints exceeded ...
nmrlearner News from other NMR forums 0 10-27-2011 11:42 PM
[Question from NMRWiki Q&A forum] Bruker GRPDLY Parameter
Bruker GRPDLY Parameter I am new to working with Bruker-style NMR data and am experiencing confusion with regard to Bruker's digital filtering. Some experiments on our Bruker spectrometers result in valid decim/dspfvs/grpdly values in the acqus output file, but other spectrometers give a value of -1 for grpdly. Does anyone know what this value means? More importantly, how can I calculate how many points to left-shift the Bruker fid for offline processing when grpdly does not contain the value? Thank you. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 11-11-2010 04:33 PM
Chemical shift tensors: Theory and application to molecular structural problems
Chemical shift tensors: Theory and application to molecular structural problems Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 22 October 2010</br> Julio C., Facelli</br> More...
nmrlearner Journal club 0 10-23-2010 07:42 AM
Automatic maximum entropy spectral reconstruction in NMR
Automatic maximum entropy spectral reconstruction in NMR Mehdi Mobli, Mark W. Maciejewski, Michael R. Gryk and Jeffrey C. Hoch Journal of Biomolecular NMR; 2007; 39(2) pp 133 - 139 Abstract: Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time...
stewart Journal club 0 08-05-2008 01:24 PM
Refinement against order parameter with XPLOR
New 2.10 release of XPLOR-NIH can now do a refinement against order parameters. You can get an idea what this refinement can be used for from the this paper. Info about new features of XPLOR-NIH 2.10 from XPLOR-NIH website: - new parameter/topology file naming convention: NMR protein refinement should now use topology file protein.top and parameter file protein.par. - new command: tclXplor which calls xplor -tcl. Can be used as command interpreter - new potential term OrderPot to enable refinement against order parameters. - update to PrePot from Junji Iwahara - CSAPot: 15N CSAs...
nmrlearner NMR structure calculation 0 05-16-2005 04:02 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:23 AM.


Map