BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 11:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Temperature-jump NMR study of protein folding: ribonuclease A at low pH.

Temperature-jump NMR study of protein folding: ribonuclease A at low pH.

Related Articles Temperature-jump NMR study of protein folding: ribonuclease A at low pH.

J Biomol NMR. 1991 May;1(1):65-70

Authors: Akasaka K, Naito A, Nakatani H

The kinetic process of folding of bovine pancreatic ribonuclease A in a 2H2O environment at pH 1.2 was examined by a recently developed temperature-jump NMR method (Akasaka et al., (1990) Rev. Sci. Instrum. 61, 66-68). Upon temperature-jump down from 45 degrees C to 29 degrees C, which was attained within 6 s, the proton NMR spectral changes were followed consecutively in time intervals of seconds. There was a rapid spectral change, which was finished within the jump period, followed by a much slower process which lasted for a minute or longer. Rates of the slower process were measured at different positions of the polypeptide chain as intensity changes of individual His and Tyr proton signals of the folded conformer and as intensity changes of aliphatic and His protons of the unfolded conformer. Most of these rates coincided with each other within experimental error with an average value of 2.8 x 10(-2) s-1. The result gave clear experimental evidence that the slow folding of RNase A at low pH is a cooperative process involving most regions of the molecule, not only thermodynamically, but kinetically as well.

PMID: 1841690 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] A protein folding intermediate of ribonuclease T1 characterized at high resolution by
A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy. Related Articles A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy. J Mol Biol. 1999 Jan 15;285(2):829-42 Authors: Balbach J, Steegborn C, Schindler T, Schmid FX The rate-limiting step during the refolding of S54G/P55N ribonuclease T1 is determined by the slow trans-->cis prolyl isomerisation of Pro39. We investigated the refolding of this variant by...
nmrlearner Journal club 0 11-18-2010 07:05 PM
[NMR paper] H-NMR study of temperature-induced structure alteration at the active site of horse h
H-NMR study of temperature-induced structure alteration at the active site of horse heart cytochrome c. Related Articles H-NMR study of temperature-induced structure alteration at the active site of horse heart cytochrome c. J Biochem. 1996 Jan;119(1):16-22 Authors: Yamamoto Y The molecular structure of the active site of horse heart met-cyano cytochrome c, as a function of temperature, has been investigated using 1H-NMR. A temperature dependence study of the NMR spectra revealed that one heme methyl proton resonance exhibits anti-Curie...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Folding properties of an annexin I domain: a 1H-15N NMR and CD study.
Folding properties of an annexin I domain: a 1H-15N NMR and CD study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Folding properties of an annexin I domain: a 1H-15N NMR and CD study. Biochemistry. 1996 Aug 13;35(32):10347-57 Authors: Cordier-Ochsenbein F, Guerois R, Baleux F, Huynh-Dinh T, Chaffotte A, Neumann JM, Sanson A The annexin fold consists of four 70-residue domains with markedly homologous sequences and nearly identical structures. Each domain contains five helices...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescen
Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescence, and NMR study. Related Articles Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescence, and NMR study. Biochemistry. 1995 Dec 26;34(51):16552-62 Authors: Yamasaki K, Ogasahara K, Yutani K, Oobatake M, Kanaya S The unfolding and refolding processes of Escherichia coli ribonuclease HI at 25 degrees C, induced by concentration jumps of either guanidine hydrochloride (GuHCl) or urea, were investigated using stopped-flow...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton
Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. J Mol Biol. 1995 Jul 28;250(5):689-94 Authors: Yamaguchi T, Yamada H, Akasaka K Thermodynamic stability of ribonuclease A (6.2 mM pH 1.0, 0.15 M KCl, in 2H2O) has been studied in the pressure range of 1 to 2000 atm and in the temperature range...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR study of the cold, heat, and pressure unfolding of ribonuclease A.
NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Related Articles NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631-41 Authors: Zhang J, Peng X, Jonas A, Jonas J The reversible cold, heat, and pressure unfolding of RNase A and RNase A--inhibitor complex were studied by 1D and 2D 1H NMR spectroscopy. The reversible pressure denaturation experiments in the pressure range from 1 bar to 5 kbar were carried out at pH 2.0 and 10 degrees C. The cold denaturation was...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide ex
Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Related Articles Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Biochemistry. 1993 Jun 22;32(24):6152-6 Authors: Mullins LS, Pace CN, Raushel FM The rate of hydrogen bond formation at individual amino acid residues in ribonuclease T1 (RNase T1) has been investigated by the hydrogen-deuterium exchange-2D NMR (HDEx-2D NMR) technique (Udgaonkar...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] 13C magic angle spinning NMR study of the light-induced and temperature-dependent cha
13C magic angle spinning NMR study of the light-induced and temperature-dependent changes in Rhodobacter sphaeroides R26 reaction centers enriched in tyrosine. Related Articles 13C magic angle spinning NMR study of the light-induced and temperature-dependent changes in Rhodobacter sphaeroides R26 reaction centers enriched in tyrosine. Biochemistry. 1992 Nov 17;31(45):11038-49 Authors: Fischer MR, de Groot HJ, Raap J, Winkel C, Hoff AJ, Lugtenburg J Solid-state 13C magic angle spinning (MAS) NMR has been used to investigate...
nmrlearner Journal club 0 08-21-2010 11:45 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:40 AM.


Map