BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies. (http://www.bionmr.com/forum/journal-club-9/tangled-web-interactions-among-proteins-involved-iron-sulfur-cluster-assembly-unraveled-nmr-saxs-chemical-crosslinking-functional-studies-21545/)

nmrlearner 12-03-2014 04:05 PM

Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies.
 
Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies.

Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies.

Biochim Biophys Acta. 2014 Nov 22;

Authors: Kim JH, Bothe JR, Reid Alderson T, Markley JL

Abstract
Proteins containing iron-sulfur (Fe-S) clusters arose early in evolution and are essential to life. Organisms have evolved machinery consisting of specialized proteins that operate together to assemble Fe-S clusters efficiently so as to minimize cellular exposure to their toxic constituents: iron and sulfide ions. To date, the best studied system is the iron sulfur cluster (isc) operon of Escherichia coli, and the eight ISC proteins it encodes. Our investigations over the past five years have identified two functional conformational states for the scaffold protein (IscU) and have shown that the other ISC proteins that interact with IscU prefer to bind one conformational state or the other. From analyses of the NMR spectroscopy-derived network of interactions of ISC proteins and small-angle X-ray scattering (SAXS), chemical crosslinking experiments, and functional assays, we have constructed working models for Fe-S cluster assembly and delivery. Future work is needed to validate and refine what has been learned about the E. coli system and to extend these findings to the homologous Fe-S cluster biosynthetic machinery of yeast and human mitochondria. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


PMID: 25450980 [PubMed - as supplied by publisher]



More...


All times are GMT. The time now is 05:49 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013