BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-03-2011, 06:45 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,065
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Suppression of phospholipid biosynthesis by cerulenin in the condensed Single-Protein-Production (cSPP) system

Suppression of phospholipid biosynthesis by cerulenin in the condensed Single-Protein-Production (cSPP) system


Abstract Using the single-protein-production (SPP) system, a protein of interest can be exclusively produced in high yield from its ACA-less gene in Escherichia coli expressing MazF, an ACA-specific mRNA interferase. It is thus feasible to study a membrane protein by solid-state NMR (SSNMR) directly in natural membrane fractions. In developing isotope-enrichment methods, we observed that 13C was also incorporated into phospholipids, generating spurious signals in SSNMR spectra. Notable, with the SPP system a protein can be produced in total absence of cell growth caused by antibiotics. Here, we demonstrate that cerulenin, an inhibitor of phospholipid biosynthesis, can suppress isotope incorporation in the lipids without affecting membrane protein yield in the SPP system. SSNMR analysis of ATP synthase subunit c, an E. coli inner membrane protein, produced by the SPP method using cerulenin revealed that 13C resonance signals from phospholipid were markedly reduced, while signals for the isotope-enriched protein were clearly present.
  • Content Type Journal Article
  • Pages 1-7
  • DOI 10.1007/s10858-011-9469-5
  • Authors
    • Lili Mao, Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
    • Koichi Inoue, Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
    • Yisong Tao, Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
    • Gaetano T. Montelione, Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
    • Ann E. McDermott, Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
    • Masayori Inouye, Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Erratum to: Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O
Erratum to: Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O Erratum to: Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O Content Type Journal Article Category Erratum Pages 1-1 DOI 10.1007/s10858-011-9562-9 Authors
nmrlearner Journal club 0 09-20-2011 05:02 AM
Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O
Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O Abstract Selectively isotope labelled protein samples can be prepared in vivo or in vitro from selectively labelled amino acids but, in many cases, metabolic conversions between different amino acids result in isotope scrambling. The best results are obtained by cell-free protein synthesis, where metabolic enzymes are generally less active, but isotope scrambling can never be suppressed completely. We show that...
nmrlearner Journal club 0 02-16-2011 09:34 PM
[NMR paper] Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions.
Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions. Related Articles Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions. J Biomol NMR. 2005 Jul;32(3):235-41 Authors: Ozawa K, Jergic S, Crowther JA, Thompson PR, Wijffels G, Otting G, Dixon NA Cell-free protein synthesis systems provide facile access to proteins in a nascent state that enables formation of soluble, native protein-protein complexes even if one of the protein components is prone...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Biochemistry. 2005 Sep 6;44(35):11795-810 Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339)...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Expanding the Scope of Protein Biosynthesis by Altering the Methionyl-tRNA Synthetase
Expanding the Scope of Protein Biosynthesis by Altering the Methionyl-tRNA Synthetase Activity of a Bacterial Expression Host Scott Ross was helpful in conducting the 1D TOCSY NMR experiments and Pratip Bhattachary is thanked for assistance in other NMR experiments. We are grateful to Yves Mechulam for a sample of plasmid pBSM547W305F and to Hieronim Jakubowski of UMDNJ-New Jersey Medical School, Newark, New Jersey, for plasmid pGG3. K.L.K. thanks the U.S. Department of Defense for a National Defense Science and Engineering Graduate Fellowship. This work was supported by grants from the...
nmrlearner Journal club 0 11-18-2010 09:15 PM
Efficient protein production method for NMR using soluble protein tags with cold shoc
Efficient protein production method for NMR using soluble protein tags with cold shock expression vector Abstract The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins...
nmrlearner Journal club 0 09-18-2010 04:53 AM
Efficient protein production method for NMR using soluble protein tags with cold shoc
Efficient protein production method for NMR using soluble protein tags with cold shock expression vector. Related Articles Efficient protein production method for NMR using soluble protein tags with cold shock expression vector. J Biomol NMR. 2010 Sep 16; Authors: Hayashi K, Kojima C The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To...
nmrlearner Journal club 0 09-17-2010 04:14 PM
Breakthrough in protein production for NMR?
The next best thing after cryoprobe and TROSY? Single Protein Production in Living Cells Facilitated by an mRNA Interferase Motoo Suzuki,1 Junjie Zhang,1 Mohan Liu,2 Nancy A. Woychik,2 and Masayori Inouye1,* 1 Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854 2 Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854
nmrlearner Proteins 0 05-07-2005 05:38 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:16 AM.


Map