BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-12-2013, 07:09 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Summation solute hydrogen bonding acidity values for hydroxyl substituted flavones determined by NMR spectroscopy.

Summation solute hydrogen bonding acidity values for hydroxyl substituted flavones determined by NMR spectroscopy.

Related Articles Summation solute hydrogen bonding acidity values for hydroxyl substituted flavones determined by NMR spectroscopy.

Nat Prod Commun. 2013 Jan;8(1):85-98

Authors: Whaley WL, Okoso-amaa EM, Womack CL, Vladimirova A, Rogers LB, Risher MJ, Abraham MH

Abstract
The flavonoids are a structurally diverse class of natural products that exhibit a broad spectrum of biochemical activities. The flavones are one of the most studied flavonoid subclasses due to their presence in dietary plants and their potential to protect human cells from reactive oxygen species (ROS). Several flavone compounds also mediate beneficial actions by direct binding to protein receptors and regulatory enzymes. There is current interest in using Quantitative Structure Activity Relationships (QSARs) to guide drug development based on flavone lead structures. This approach is most informative when it involves the use of accurate physical descriptors. The Abraham summation solute hydrogen bonding acidity (A) is a descriptor in the general solvation equation. It defines the tendency of a molecule to act as a hydrogen bond donor, or acid, when surrounded by solvent molecules that are hydrogen bonding acceptors, or bases. As a linear free energy relationship, it is useful for predicting the absorption and uptake of drug molecules. A previously published method, involving nuclear magnetic resonance (NMR) spectroscopy, was used to evaluate A for the monohydroxyflavones (MHFs). Values of A ranged from 0.02, for 5-hydroxyflavone, to 0.69 for 4'-hydroxyflavone. The ability to examine separate NMR signals for individual hydroxyl groups allowed the investigation of intramolecular interactions between functional groups. The value of A for the position 7 hydroxyl group of 7-hydroxyflavone was 0.67. The addition of a position 5 hydroxyl group (in 5,7-dihydroxyflavone) increased the value of A for the position 7 hydroxyl group to 0.76. Values of A for MHFs were also calculated by the program ACD-Absolve and these agreed well with values measured by NMR. These results should facilitate more accurate estimation of the values of A for structurally complex flavones with pharmacological activities.


PMID: 23472467 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Hydrogen bonding in Alzheimer's amyloid-? fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy. Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10289-92 Authors: Antzutkin ON, Iuga D, Filippov AV, Kelly RT, Becker-Baldus J, Brown SP, Dupree R PMID: 22976560
nmrlearner Journal club 0 02-16-2013 08:00 PM
[NMR paper] Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus ac
Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus acetylation on the active site electronic and molecular structure of Aplysia limacina cyanomet myoglobin. Related Articles Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus acetylation on the active site electronic and molecular structure of Aplysia limacina cyanomet myoglobin. J Biol Chem. 2000 Jan 14;275(2):742-51 Authors: Nguyen BD, Xia Z, Cutruzzolá F, Allocatelli CT, Brunori M, La Mar GN The sea hare Aplysia limacina...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] 1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cy
1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cyanomet complex of oxygen-avid Ascaris suum hemoglobin. Related Articles 1H NMR investigation of the distal hydrogen bonding network and ligand tilt in the cyanomet complex of oxygen-avid Ascaris suum hemoglobin. J Biol Chem. 1999 Nov 5;274(45):31819-26 Authors: Xia Z, Zhang W, Nguyen BD, Mar GN, Kloek AP, Goldberg DE The O(2)-avid hemoglobin from the parasitic nematode Ascaris suum exhibits one of the slowest known O(2) off rates. Solution (1)H NMR has been...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the D
NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with target RNA fragments with site-specific uridine substitutions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-oxfordjournals_final_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the D
NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with target RNA fragments with site-specific uridine substitutions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-oxfordjournals_final_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR analysis of the hydrogen bonding interactions of the RNA-binding domains of the Drosophila sex-lethal protein with...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. Related Articles NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. J Biomol NMR. 1992 Sep;2(5):447-65 Authors: Liepinsh E, Otting G, Wüthrich K Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy:
Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Related Articles Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Biochemistry. 1990 Jul 3;29(26):6303-13 Authors: Henry GD, Sykes BD The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the...
nmrlearner Journal club 0 08-21-2010 11:04 PM
Hydrogen-bonding potential to refine NMR structure
An Empirical Backbone-Backbone Hydrogen-Bonding Potential in Proteins and Its Applications to NMR Structure Refinement and Validation Alexander Grishaev and Ad Bax J. Am. Chem. Soc.; 2004; 126(23) pp 7281 - 7292 http://pubs.acs.org./isubscribe/journals/jacsat/126/i23/figures/ja0319994n00001.gif Abstract: A new multidimensional potential is described that encodes for the relative spatial arrangement of the peptidyl backbone units as observed within a large database of high-resolution X-ray structures. The detailed description afforded by such an analysis provides an opportunity to study...
nmrlearner Journal club 0 06-29-2005 04:16 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:17 PM.


Map