BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure of the model peptides of Bombyx mori silk-elastin like protein studied with

Structure of the model peptides of Bombyx mori silk-elastin like protein studied with solid state NMR.

Related Articles Structure of the model peptides of Bombyx mori silk-elastin like protein studied with solid state NMR.

Biomacromolecules. 2004 May-Jun;5(3):744-50

Authors: Ohgo K, Kurano TL, Kumashiro KK, Asakura T

The peptides (AG)(6)(VPGVG)(AG)(7) and (AG)(5)(VPGVG)(2)(AG)(5) are models for a new type of protein with both composition and properties such as Bombyx mori silk and elastin. In this paper, we report the solid-state NMR results for these samples and related peptides; the structures after dialysis of the 9 M LiBr aqueous solution and after treatment with formic acid were determined and compared. The detailed structural analyses were performed using deconvolution subroutines assuming Gaussian line shapes for the Ala Cbeta peaks of the (AG)(n) sequences in these peptides. The peptide (AG)(6)(VPGVG)(AG)(7) took the silk II structure after the dialysis, which is in contrast to the silk I form of (AG)(15) after the same treatment. However, a drastic structural change of the (AG)(n) sequences was observed for (AG)(5)(VPGVG)(2)(AG)(5); the fraction of distorted beta-turn was 81% after the dialysis, but the distorted beta-sheet became dominant (84%) after treatment with formic acid. The local structures of the Gly residue of the VG units in the elastin-like subunits, (VPGVG) and (VPGVG)(2), were the distorted structures with a distribution of the torsion angles, which was derived from the 2D spin diffusion NMR spectral pattern of (AG)(5)VPG[1-(13)C]V[1-(13)C]GVPGVG(AG)(5). Observation of this distribution of the Gly residue was independent of the treatment, dialysis or formic acid.

PMID: 15132656 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
(13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.
(13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning. (13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning. Biopolymers. 2011 Sep 12; Authors: Yazawa K, Yamaguchi E, Knight D, Asakura T Abstract We prepared the water soluble model peptide, (E)(8)...
nmrlearner Journal club 0 09-14-2011 08:07 PM
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk.
Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Chem Commun (Camb). 2010 Sep 28;46(36):6714-6 Authors: Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP Two-dimensional homo- and heteronuclear solid-state MAS NMR experiments on (13)C/(15)N-proline labeled Argiope aurantia dragline silk provide evidence for an elastin-like beta-turn structure for the repetitive Gly-Pro-Gly-X-X motif prevalent in major...
nmrlearner Journal club 0 12-28-2010 03:31 PM
[NMR paper] Structural analysis of Bombyx mori silk fibroin peptides with formic acid treatment u
Structural analysis of Bombyx mori silk fibroin peptides with formic acid treatment using high-resolution solid-state 13C NMR spectroscopy. Related Articles Structural analysis of Bombyx mori silk fibroin peptides with formic acid treatment using high-resolution solid-state 13C NMR spectroscopy. Biomacromolecules. 2004 Sep-Oct;5(5):1763-9 Authors: Yao J, Ohgo K, Sugino R, Kishore R, Asakura T Bombyx mori silk fibroin fiber is a fibrous protein produced by the silkworm at room temperature and from an aqueous solution whose primary structure is...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR a
Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Related Articles Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Magn Reson Chem. 2004 Feb;42(2):258-66 Authors: Asakura T, Suita K, Kameda T, Afonin S, Ulrich AS The influence of the bulky and H-bonding Tyr side-chain on its Ala- and Gly-rich environment in Bombyx mori silk fibroin was...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiologica
NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. Related Articles NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett. 2002 Nov 6;531(2):314-8 Authors: Lee D, Damberger FF, Peng G, Horst R, Güntert P, Nikonova L, Leal WS, Wüthrich K The nuclear magnetic resonance structure of the unliganded pheromone-binding protein (PBP) from Bombyx mori at pH above 6.5, BmPBP(B), consists of seven helices with residues 3-8, 16-22, 29-32, 46-59, 70-79, 84-100, and...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibr
The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scattering. Related Articles The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scattering. Protein Sci. 2002 Aug;11(8):1873-7 Authors: Asakura T, Sugino R, Okumura T, Nakazawa Y Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR assignment of the A form of the pheromone-binding protein of Bombyx mori.
NMR assignment of the A form of the pheromone-binding protein of Bombyx mori. Related Articles NMR assignment of the A form of the pheromone-binding protein of Bombyx mori. J Biomol NMR. 2001 Jan;19(1):79-80 Authors: Horst R, Damberger F, Peng G, Nikonova L, Leal WS, Wüthrich K
nmrlearner Journal club 0 11-19-2010 08:32 PM
[Question from NMRWiki Q&A forum] Please suggest model proteins and peptides for NMR
Please suggest model proteins and peptides for NMR do you know any model proteins except lysozyme suitable for nmr experiments? Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-22-2010 02:30 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:43 AM.


Map