BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 11:45 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 17,582
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by so

Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR.

Related Articles Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR.

Biochemistry. 1992 Oct 27;31(42):10390-9

Authors: Ulrich AS, Heyn MP, Watts A

The orientation and conformation of retinal within bacteriorhodopsin of the purple membrane of Halobacterium halobium was established by solid-state deuterium NMR spectroscopy, through the determination of individual chemical bond vectors. The chromophore ([2,4,4,16,16,17,17,17,18,18-2H11]retinal) was specifically deuterium-labeled on the cyclohexene ring and incorporated into the protein. A uniaxially oriented sample of purple membrane patches was prepared and measured at a series of inclinations relative to the spectrometer field. 31P NMR was used to characterize the mosaic spread of the oriented sample, and computer simulations were applied in the analysis of the 2H NMR and 31P NMR spectral line shapes. From the deuterium quadrupole splittings, the specific orientations of the three labeled methyl groups on the cyclohexene ring could be calculated. The two adjacent methyl groups (on C1) of the retinal were found to lie approximately horizontal in the membrane and make respective angles of 94 degrees +/- 2 degrees and 75 degrees +/- 2 degrees with the membrane normal. The third group (on C5) points toward the cytoplasmic side with an angle of 46 degrees +/- 3 degrees. These intramolecular constraints indicate that the cyclohexene ring lies approximately perpendicular to the membrane surface and that it has a (6S)-trans conformation. From the estimated angle of the tilt of the chomophore long axis, it is concluded that the polyene chain is slightly curved downward to the extracellular side of the membrane.

PMID: 1420157 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Zeolite Structure Directionby Simple Bis(methylimidazolium)Cations: The Effect of the Spacer Length on Structure Direction andof the Imidazolium Ring Orientation on the 19F NMR Resonances
Zeolite Structure Directionby Simple Bis(methylimidazolium)Cations: The Effect of the Spacer Length on Structure Direction andof the Imidazolium Ring Orientation on the 19F NMR Resonances Alex Rojas, Luis Gomez-Hortiguela and Miguel A. Camblor http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210703y/aop/images/medium/ja-2011-10703y_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja210703y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iCRALKKrMXw
nmrlearner Journal club 0 02-16-2012 05:24 AM
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR.
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. J Biomol NMR. 2010 Sep;48(1):1-11 Authors: Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we...
nmrlearner Journal club 0 12-18-2010 12:00 PM
[NMR paper] Deuterium NMR structure of retinal in the ground state of rhodopsin.
Deuterium NMR structure of retinal in the ground state of rhodopsin. Related Articles Deuterium NMR structure of retinal in the ground state of rhodopsin. Biochemistry. 2004 Oct 12;43(40):12819-28 Authors: Salgado GF, Struts AV, Tanaka K, Fujioka N, Nakanishi K, Brown MF The conformation of retinal bound to the G protein-coupled receptor rhodopsin is intimately linked to its photochemistry, which initiates the visual process. Site-directed deuterium ((2)H) NMR spectroscopy was used to investigate the structure of retinal within the binding...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice
High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. Related Articles High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. J Biol Chem. 2003 Apr 25;278(17):15341-8 Authors: Katoh S, Hong C, Tsunoda Y, Murata K, Takai R, Minami E, Yamazaki T, Katoh E EL5, a RING-H2 finger protein, is rapidly induced by...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Rotational resonance NMR study of the active site structure in bacteriorhodopsin: con
Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Related Articles Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Biochemistry. 1992 Sep 1;31(34):7931-8 Authors: Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] NMR studies of retinal proteins.
NMR studies of retinal proteins. Related Articles NMR studies of retinal proteins. J Bioenerg Biomembr. 1992 Apr;24(2):139-46 Authors: Zheng L, Herzfeld J A review is given of the use of nuclear magnetic resonance (NMR) spectroscopy to study bacteriorhodopsin and bovine rhodopsin. Solution and solid-state approaches are included. The studies of the bacterial proton pump examine the chromophore, the peptide backbone, and the protein side chains. The studies of the bovine visual pigment are limited to the chromophore. Various forms of each...
nmrlearner Journal club 0 08-21-2010 11:41 PM
Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthas
Abstract The subunit c-ring of H+-ATP synthase (Fo c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly -labeled Fo c from E. coli (EFo c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the 13C and 15N signals were assigned. The obtained chemical shifts suggested that EFo c takes on a hairpin-type helix-loop-helix...
nmrlearner Solid-state high-res. NMR 0 08-08-2010 01:57 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:30 AM.


Map