BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology] (http://www.bionmr.com/forum/journal-club-9/structural-topology-phospholamban-pentamer-lipid-bilayers-hybrid-solution-solid-state-nmr-method-%5Bbiophysics-computational-biology%5D-13268/)

nmrlearner 05-31-2011 11:41 PM

Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology]
 
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology]

Verardi, R., Shi, L., Traaseth, N. J., Walsh, N., Veglia, G....
Date: 2011-05-31

Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix–helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA. Read More


PNAS:
Number: 22
Volume: 108


All times are GMT. The time now is 11:15 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013