BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-30-2016, 04:57 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structural Determinants of Improved Fluorescence ina Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins:Insights from Continuum Electrostatic Calculations and Molecular DynamicsSimulations

Structural Determinants of Improved Fluorescence ina Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins:Insights from Continuum Electrostatic Calculations and Molecular DynamicsSimulations



Biochemistry
DOI: 10.1021/acs.biochem.6b00295



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA.
Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA. Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA. Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jun 18;169:175-181 Authors: Chaves OA, Jesus CS, Cruz PF, Sant'Anna CM, Brito RM, Serpa C Abstract Serum albumins present reversible pH dependent conformational transitions. A sudden laser induced pH-jump is a methodology that can provide new...
nmrlearner Journal club 0 07-06-2016 02:00 AM
Tolerance of a Knotted Near-Infrared Fluorescent Proteinto Random Circular Permutation
Tolerance of a Knotted Near-Infrared Fluorescent Proteinto Random Circular Permutation http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00258/20160629/images/medium/bi-2016-00258j_0007.gif Biochemistry DOI: 10.1021/acs.biochem.6b00258 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/BFoPZHgtXaU More...
nmrlearner Journal club 0 06-30-2016 02:26 AM
The CopC Family: Structural and Bioinformatic Insightsinto a Diverse Group of Periplasmic Copper Binding Proteins
The CopC Family: Structural and Bioinformatic Insightsinto a Diverse Group of Periplasmic Copper Binding Proteins http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00175/20160406/images/medium/bi-2016-001758_0008.gif Biochemistry DOI: 10.1021/acs.biochem.6b00175 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/NhUil9uehKc More...
nmrlearner Journal club 0 04-06-2016 10:29 PM
[NMR paper] Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations.
Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations. Related Articles Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys. 2015 Oct 9; Authors: Paluch P, Pawlak T, Jeziorna A, Trébosc J, Hou G, Vega AJ, Amoureux JP, Dracinsky M, Polenova T, Potrzebowski MJ Abstract We report a new multidimensional magic angle spinning...
nmrlearner Journal club 0 10-10-2015 06:47 PM
Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings
Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings Abstract Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural...
nmrlearner Journal club 0 06-26-2012 06:18 AM
[NMR paper] QSAR-by-NMR: quantitative insights into structural determinants for binding affinity
QSAR-by-NMR: quantitative insights into structural determinants for binding affinity by analysis of 1H/15N chemical shift differences in MMP-3 ligands. Related Articles QSAR-by-NMR: quantitative insights into structural determinants for binding affinity by analysis of 1H/15N chemical shift differences in MMP-3 ligands. Bioorg Med Chem Lett. 2005 Apr 1;15(7):1779-83 Authors: Matter H, Schudok M, Elshorst B, Jacobs DM, Saxena K, Kogler H A novel strategy is applied to obtain quantitative insights on factors influencing biological affinity in...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Insights into the determinants of beta-sheet stability: 1H and 13C NMR conformational
Insights into the determinants of beta-sheet stability: 1H and 13C NMR conformational investigation of three-stranded antiparallel beta-sheet-forming peptides. Related Articles Insights into the determinants of beta-sheet stability: 1H and 13C NMR conformational investigation of three-stranded antiparallel beta-sheet-forming peptides. J Pept Res. 2003 Apr;61(4):177-88 Authors: Santiveri CM, Rico M, Jiménez MA, Pastor MT, Pérez-Payá E In a previous study we designed a 20-residue peptide able to adopt a significant population of a three-stranded...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Improved efficiency of protein structure calculations from NMR data using the program
Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. Related Articles Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991 Nov;1(4):447-56 Authors: Güntert P, Wüthrich K A new strategy for NMR structure calculations of proteins with the variable target function method (Braun, W. and Go, N. (1985) J. Mol. Biol., 186, 611) is described, which makes use of...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:44 AM.


Map