BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structural characterization of proteins with an attached ATCUN motif by paramagnetic

Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy.

Related Articles Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy.

J Am Chem Soc. 2001 Oct 10;123(40):9843-7

Authors: Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE

The use of a short, three-residue Cu(2+)-binding sequence, the ATCUN motif, is presented as an approach for extracting long-range distance restraints from relaxation enhancement NMR spectroscopy. The ATCUN motif is prepended to the N-termini of proteins and binds Cu(2+) with a very high affinity. Relaxation rates of amide protons in ATCUN-tagged protein in the presence and absence of Cu(2+) can be converted into distance restraints and used for structure refinement by using a new routine, PMAG, that has been written for the structure calculation program CNS. The utility of the approach is demonstrated with an application to ATCUN-tagged ubiquitin. Excellent agreement between measured relaxation rates and those calculated on the basis of the X-ray structure of the protein have been obtained.

PMID: 11583547 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Chem Commun (Camb). 2011 May 27; Authors: Swarbrick JD, Ung P, Su XC, Maleckis A, Chhabra S, Huber T, Otting G, Graham B Attachment of two nitrilotriacetic acid-based ligands to a protein ?-helix in an i, i + 4 configuration produces an octadentate chelating motif that is able to bind paramagnetic...
nmrlearner Journal club 0 05-28-2011 06:50 PM
[NMR paper] Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation.
Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation. Related Articles Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation. Biochemistry. 2005 Aug 23;44(33):11014-23 Authors: Jensen MR, Petersen G, Lauritzen C, Pedersen J, Led JJ A method is presented that allows the identification and quantitative characterization of metal binding sites in proteins using paramagnetic nuclear magnetic resonance spectroscopy. The method relies on the nonselective...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Protein structural motif recognition via NMR residual dipolar couplings.
Protein structural motif recognition via NMR residual dipolar couplings. Related Articles Protein structural motif recognition via NMR residual dipolar couplings. J Am Chem Soc. 2001 Feb 14;123(6):1222-9 Authors: Andrec M, Du P, Levy RM NMR residual dipolar couplings have great potential to provide rapid structural information for proteins in the solution state. This information even at low resolution may be used to advantage in proteomics projects that seek to annotate large numbers of gene products for entire genomes. In this paper, we...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as
Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. Related Articles Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. J Biomol NMR. 1998 Oct;12(3):385-94 Authors: Yamaguchi Y, Kato K, Shindo M, Aoki S, Furusho K, Koga K, Takahashi N, Arata Y, Shimada I A systematic method for 13C labeling of the glycan of...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR
The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. Biochemistry. 1997 Nov 4;36(44):13657-66 Authors: Wang G, Sparrow JT, Cushley RJ The conformation of a synthetic peptide of 46 residues from apoA-I was investigated by fluorescence, CD, and 2D NMR spectroscopies in lipid-mimetic environments....
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfov
Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. Eur J Biochem. 1997 Mar 15;244(3):721-34 Authors: Salgueiro CA, Turner DL, Xavier AV The dipolar field generated by each of the four haems in the tetrahaem ferricytochrome c3 from...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfov
Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. Eur J Biochem. 1997 Mar 15;244(3):721-34 Authors: Salgueiro CA, Turner DL, Xavier AV The dipolar field generated by each of the four haems in the tetrahaem ferricytochrome c3 from...
nmrlearner Journal club 0 08-22-2010 03:03 PM
NMR of paramagnetic proteins - the Biophysical Society
Ivano Bertini and Claudio Luchinat, for the Biophysical Society, talk about NMR of paramagnetic proteins: http://www.biophysics.org/education/ibertini.pdf
Derek Educational web pages 0 09-12-2008 07:45 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:47 PM.


Map