BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-29-2016, 03:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,617
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

Related Articles A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

Nat Protoc. 2016 Aug;11(8):1492-1507

Authors: Cassaignau AM, Launay HM, Karyadi ME, Wang X, Waudby CA, Deckert A, Robertson AL, Christodoulou J, Cabrita LD

Abstract
During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (>=10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.


PMID: 27466710 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes.
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes. Related Articles Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes. J Biomol NMR. 2015 Aug 8; Authors: Chan SH, Waudby CA, Cassaignau AM, Cabrita LD, Christodoulou J Abstract The translational diffusion of macromolecules can be examined non-invasively by...
nmrlearner Journal club 0 08-09-2015 05:01 PM
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosomeâ??nascent chain complexes
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosomeâ??nascent chain complexes Abstract The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies...
nmrlearner Journal club 0 08-08-2015 12:17 PM
[NMR paper] Protein folding on the ribosome studied using NMR spectroscopy.
Protein folding on the ribosome studied using NMR spectroscopy. Protein folding on the ribosome studied using NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2013 Oct;74C:57-75 Authors: Waudby CA, Launay H, Cabrita LD, Christodoulou J Abstract NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been...
nmrlearner Journal club 0 10-03-2013 03:31 PM
[NMR paper] Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.
Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae. Biomol NMR Assign. 2013 Aug 7; Authors: Wurm JP, Lioutikov A, Kötter P, Entian KD, Wöhnert J Abstract The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost...
nmrlearner Journal club 0 08-08-2013 03:46 PM
Protein folding on the ribosome studied using NMR spectroscopy
Protein folding on the ribosome studied using NMR spectroscopy Publication date: Available online 27 July 2013 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Christopher A. Waudby , Hélène Launay , Lisa D. Cabrita , John Christodoulou</br> NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been...
nmrlearner Journal club 0 07-28-2013 07:11 AM
Co-Translational Protein Folding on the Ribosome: using NMR Spectroscopy to Provide Structure and Dynamics of Ribosome-Nascent Chains
Co-Translational Protein Folding on the Ribosome: using NMR Spectroscopy to Provide Structure and Dynamics of Ribosome-Nascent Chains 29 January 2013 Publication year: 2013 Source:Biophysical Journal, Volume 104, Issue 2, Supplement 1</br> </br> </br> </br></br>
nmrlearner Journal club 0 02-03-2013 10:13 AM
Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis.
Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis. Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis. Biomol NMR Assign. 2011 Jul 6; Authors: Veith T, Wurm JP, Duchardt-Ferner E, Weis B, Martin R, Safferthal C, Bohnsack MT, Schleiff E, Wöhnert J Eukaryotic ribosome biogenesis requires the concerted action of ~200 auxiliary protein factors on the nascent ribosome. For many of these...
nmrlearner Journal club 0 07-07-2011 05:12 PM
[NMR paper] Heteronuclear NMR studies of the specificity of the post-translational modification o
Heteronuclear NMR studies of the specificity of the post-translational modification of biotinyl domains by biotinyl protein ligase. Related Articles Heteronuclear NMR studies of the specificity of the post-translational modification of biotinyl domains by biotinyl protein ligase. FEBS Lett. 2000 Aug 18;479(3):93-8 Authors: Reche PA, Howard MJ, Broadhurst RW, Perham RN The lipoyl domains of 2-oxo acid dehydrogenase multienzyme complexes and the biotinyl domains of biotin-dependent enzymes have homologous structures, but the target lysine...
nmrlearner Journal club 0 11-19-2010 08:29 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:50 AM.


Map