BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-08-2015, 09:18 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solution NMR Structure Determination of Polytopic ?-Helical Membrane Proteins: A Guide to Spin Label Paramagnetic Relaxation Enhancement Restraints.

Solution NMR Structure Determination of Polytopic ?-Helical Membrane Proteins: A Guide to Spin Label Paramagnetic Relaxation Enhancement Restraints.

Related Articles Solution NMR Structure Determination of Polytopic ?-Helical Membrane Proteins: A Guide to Spin Label Paramagnetic Relaxation Enhancement Restraints.

Methods Enzymol. 2015;557:329-348

Authors: Columbus L, Kroncke B

Abstract
Solution nuclear magnetic resonance structures of polytopic ?-helical membrane proteins require additional restraints beyond the traditional Nuclear Overhauser Effect (NOE) restraints. Several methods have been developed and this review focuses on paramagnetic relaxation enhancement (PRE). Important aspects of spin labeling, PRE measurements, structure calculations, and structural quality are discussed.


PMID: 25950972 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) Abstract The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10Â*Ã?). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a...
nmrlearner Journal club 0 11-28-2014 11:37 AM
[NMR paper] Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints.
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. J Biomol NMR. 2014 Nov 27; Authors: Furuita K, Kataoka S, Sugiki T, Hattori Y, Kobayashi N, Ikegami T, Shiozaki K, Fujiwara T, Kojima C Abstract NMR structure determination of soluble proteins...
nmrlearner Journal club 0 11-28-2014 11:37 AM
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints Abstract NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based...
nmrlearner Journal club 0 11-26-2014 10:50 PM
[NMR paper] Structure determination of ?-helical membrane proteins by solution-state NMR: Emphasis on retinal proteins.
Structure determination of ?-helical membrane proteins by solution-state NMR: Emphasis on retinal proteins. Structure determination of ?-helical membrane proteins by solution-state NMR: Emphasis on retinal proteins. Biochim Biophys Acta. 2013 Jul 2; Authors: Gautier A Abstract The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical...
nmrlearner Journal club 0 07-09-2013 02:47 PM
Structure determination of ?–helical membrane proteins by solution-state NMR: Emphasis on retinal proteins
Structure determination of ?–helical membrane proteins by solution-state NMR: Emphasis on retinal proteins Publication date: Available online 2 July 2013 Source:Biochimica et Biophysica Acta (BBA) - Bioenergetics</br> Author(s): Antoine Gautier</br> The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical reactions and mediate protein–protein interactions. Indeed, the...
nmrlearner Journal club 0 07-02-2013 09:44 AM
Requirements on Paramagnetic Relaxation Enhancement Data for Membrane Protein Structure Determination by NMR
Requirements on Paramagnetic Relaxation Enhancement Data for Membrane Protein Structure Determination by NMR 6 June 2012 Publication year: 2012 Source:Structure, Volume 20, Issue 6</br> </br> Nuclear magnetic resonance (NMR) structure calculations of the ?-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5*Å in the absence of other long-range conformational restraints. Our...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement.
Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement. Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement. J Phys Chem Lett. 2011 Jul 21;2(14):1836-1841 Authors: Tang M, Berthold DA, Rienstra CM Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is...
nmrlearner Journal club 0 08-16-2011 01:19 PM
Solution NMR studies of polytopic ?-helical membrane proteins.
Solution NMR studies of polytopic ?-helical membrane proteins. Solution NMR studies of polytopic ?-helical membrane proteins. Curr Opin Struct Biol. 2011 Jul 18; Authors: Nietlispach D, Gautier A NMR spectroscopy has established itself as one of the main techniques for the structural study of integral membrane proteins. Remarkably, over the last few years, substantial progress has been achieved in the structure determination of increasingly complex polytopical ?-helical membrane proteins, with their size approaching ~100kDa. Such advances are the...
nmrlearner Journal club 0 07-23-2011 08:54 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:47 AM.


Map