BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-19-2013, 01:22 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,751
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solid-State NMR Spectroscopy of Proteins.

Solid-State NMR Spectroscopy of Proteins.

Related Articles Solid-State NMR Spectroscopy of Proteins.

Top Curr Chem. 2013 Mar 16;

Authors: Müller H, Etzkorn M, Heise H

Abstract
Solid-state NMR spectroscopy proved to be a versatile tool for characterization of structure and dynamics of complex biochemical systems. In particular, magic angle spinning (MAS) solid-state NMR came to maturity for application towards structural elucidation of biological macromolecules. Current challenges in applying solid-state NMR as well as progress achieved recently will be discussed in the following chapter focusing on conceptual aspects important for structural elucidation of proteins.


PMID: 23504090 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner Journal club 0 09-20-2012 06:06 AM
Site-Resolved Measurementof Microsecond-to-MillisecondConformational-Exchange Processes in Proteins by Solid-State NMR Spectroscopy
Site-Resolved Measurementof Microsecond-to-MillisecondConformational-Exchange Processes in Proteins by Solid-State NMR Spectroscopy Martin Tollinger, Astrid C. Sivertsen, Beat H. Meier, Matthias Ernst and Paul Schanda http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja303591y/aop/images/medium/ja-2012-03591y_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja303591y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/ZVmFwVkbuRs
nmrlearner Journal club 0 08-29-2012 04:28 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 20; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins. Angew Chem Int Ed Engl. 2011 Apr 14; Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner Journal club 0 04-16-2011 12:29 PM
Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy
Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy Abstract We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D2O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both 1H and 15N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for 1Hâ??15N correlations in dipolar coupling based experiments for...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins u
Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. Related Articles Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. J Am Chem Soc. 2003 Oct 1;125(39):11816-7 Authors: Duma L, Hediger S, Brutscher B, Böckmann A, Emsley L We show that the resolution of homonuclear multidimensional solid-state NMR correlation experiments can be significantly improved using transition selection and spin-state-selective polarization transfer...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Solid-state NMR spectroscopy applied to membrane proteins.
Solid-state NMR spectroscopy applied to membrane proteins. Related Articles Solid-state NMR spectroscopy applied to membrane proteins. Curr Opin Struct Biol. 2000 Oct;10(5):593-600 Authors: de Groot HJ One major remaining problem in structural biology is to elucidate the structure and mechanism of function of membrane proteins. On the basis of preliminary information from genome projects, it is now estimated that up to 50,000 different membrane proteins may exist in the human being and that virtually every life process proceeds, sooner or...
nmrlearner Journal club 0 11-19-2010 08:29 PM
GFT projection NMR spectroscopy for proteins in the solid state.
GFT projection NMR spectroscopy for proteins in the solid state. GFT projection NMR spectroscopy for proteins in the solid state. J Biomol NMR. 2010 Oct 30; Authors: Trent Franks W, Atreya HS, Szyperski T, Rienstra CM Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore,...
nmrlearner Journal club 0 11-06-2010 11:02 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:44 AM.


Map