BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-28-2014, 08:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The Spatial Effect of Protein Deuteration on Nitroxide Spin-label Relaxation: Implications for EPR Distance Measurement

The Spatial Effect of Protein Deuteration on Nitroxide Spin-label Relaxation: Implications for EPR Distance Measurement


Publication date: Available online 28 September 2014
Source:Journal of Magnetic Resonance

Author(s): Hassane. El Mkami , Richard Ward , Andrew Bowman , Tom Owen-Hughes , David G. Norman

Pulsed electron-electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems.
Graphical abstract








Source: Journal of Magnetic Resonance
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator
From The DNP-NMR Blog: Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator Karabanov, A., G. Kwiatkowski, and W. Köckenberger, Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator. Mol. Phys., 2014: p. 1-17. http://dx.doi.org/10.1080/00268976.2014.884287
nmrlearner News from NMR blogs 0 07-09-2014 05:07 PM
Effect of glassy modes on electron spin–lattice relaxation in solid ethanol
From the The DNP-NMR Blog: Effect of glassy modes on electron spin–lattice relaxation in solid ethanol Merunka, D., et al., Effect of glassy modes on electron spin–lattice relaxation in solid ethanol. J. Magn. Reson., 2013. 228(0): p. 50-58. http://www.ncbi.nlm.nih.gov/pubmed/23357426
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
[Question from NMRWiki Q&A forum] Impact of deuteration on relaxation rates PROTEIN NMR
Impact of deuteration on relaxation rates PROTEIN NMR DEAR NMR WIKIERS IS THEIR ANY NMR EXPERMENT TO KNOW THE IMPACT OF DEUTERATION ON RELAXATION REATES OF C13,N15,H ALFA , H BETA OF DEURATED PROTEIN (RANDOMLY DEUTERTED) Regards SRI
nmrlearner News from other NMR forums 0 06-21-2011 03:40 PM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. J Biomol NMR. 2011 Jan 28; Authors: Gruene T, Cho MK, Karyagina I, Kim HY, Grosse C, Giller K, Zweckstetter M, Becker S Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of...
nmrlearner Journal club 0 01-29-2011 12:35 PM
[NMR paper] An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation
An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. Related Articles An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. J Am Chem Soc. 2002 Sep 11;124(36):10743-53 Authors: Korzhnev DM, Skrynnikov NR, Millet O, Torchia DA, Kay LE Rotating-frame relaxation rates, R(1)(rho), are often measured in NMR studies of protein dynamics. We show here that large systematic errors can be introduced into measured values of heteronuclear R(1)(rho) rates using schemes which are...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] An NMR investigation of the conformational effect of nitroxide spin labels on Ala-ric
An NMR investigation of the conformational effect of nitroxide spin labels on Ala-rich helical peptides. Related Articles An NMR investigation of the conformational effect of nitroxide spin labels on Ala-rich helical peptides. J Magn Reson. 1998 Apr;131(2):248-53 Authors: Bolin KA, Hanson P, Wright SJ, Millhauser GL Nitroxide spin labels, in conjunction with electron spin resonance (ESR) experiments, are extensively employed to probe the structure and dynamics of biomolecules. One of the most ubiquitous spin labeling reagents is the...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Determination of local protein structure by spin label difference 2D NMR: the region
Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase. Related Articles Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase. Biochemistry. 1995 Feb 7;34(5):1635-45 Authors: Girvin ME, Fillingame RH Purified subunit c from the H(+)-transporting F1F0 ATP synthase of Escherichia coli folds as an antiparallel pair of extended helices in a solution of...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of soni
A 31P-NMR spin-lattice relaxation and 31P nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A 31P-NMR spin-lattice relaxation and 31P nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles. Biochim Biophys Acta. 1992 Feb 17;1104(1):137-46 Authors: Tauskela JS, Thompson M The motional properties of the inner and outer monolayer headgroups of...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:43 PM.


Map