BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-05-2016, 11:21 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

J Comput Chem. 2016 Mar 4;

Authors: Shaghaghi H, Ebrahimi HP, Fathi F, Bahrami Panah N, Jalali-Heravi M, Tafazzoli M

Abstract
The dependency of amino acid chemical shifts on ? and ? torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of (13) C(?) chemical shifts relative to ? dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of (13) C(?) , and (1) H(?) chemical shifts nor on the variation of absolute deviation of (13) C(?) chemical shifts relative to ? dihedral angle. The (13) C(?) absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full-DFT and ONIOM(DFT:HF) approaches illustrates that the trend of (13) C(?) ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc.


PMID: 26940760 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Correction: Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation.
Correction: Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation. Related Articles Correction: Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation. Phys Chem Chem Phys. 2015 Apr 21; Authors: Zhu T, He X, Zhang JZ Abstract Correction for 'Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation' by Tong Zhu et al., Phys. Chem. Chem. Phys., 2012, 14, 7837-7845.
nmrlearner Journal club 0 04-22-2015 03:33 PM
A Simple Method to Measure Protein Side-Chain MobilityUsing NMR Chemical Shifts
A Simple Method to Measure Protein Side-Chain MobilityUsing NMR Chemical Shifts Mark V. Berjanskii and David S. Wishart http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja407509z/aop/images/medium/ja-2013-07509z_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja407509z http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/qRQjRZhXxAM
nmrlearner Journal club 0 09-23-2013 09:41 PM
Conformational Preferencesof trans-1,2- and cis-1,3-Cyclohexanedicarboxylic Acids in Water and Dimethyl Sulfoxide as a Function of the Ionization State As Determined from NMR Spectroscopy and Density Functional Theory Quantum Mechanical Calculations
Conformational Preferencesof trans-1,2- and cis-1,3-Cyclohexanedicarboxylic Acids in Water and Dimethyl Sulfoxide as a Function of the Ionization State As Determined from NMR Spectroscopy and Density Functional Theory Quantum Mechanical Calculations Alejandro J. Garza, Mrinmoy Nag, William R. Carroll, William A. Goddard and John D. Roberts http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja302133s/aop/images/medium/ja-2012-02133s_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja302133s...
nmrlearner Journal club 0 08-29-2012 04:28 AM
Local protein backbone folds determined by calculated NMR chemical shifts.
Local protein backbone folds determined by calculated NMR chemical shifts. Local protein backbone folds determined by calculated NMR chemical shifts. J Comput Chem. 2011 Sep 9; Authors: Czajlik A, Hudáky I, Perczel A Abstract NMR chemical shifts (CSs: ?N(NH) , ?C(?) , ?C(?) , ?C', ?H(NH) , and ?H(?) ) were computed for the amino acid backbone conformers (?(L) , ?(L) , ?(L) , ?(L) , ?(L) , ?(D) , ?(D) , ?(D) , and ?(D) ) modeled by oligoalanine structures. Topological differences of the extended fold were investigated on single ?-strands,...
nmrlearner Journal club 0 09-10-2011 06:51 PM
Addressing the Stereochemistry of Complex Organic Molecules by Density Functional Theory-NMR: Vannusal B in Retrospective
Addressing the Stereochemistry of Complex Organic Molecules by Density Functional Theory-NMR: Vannusal B in Retrospective Giacomo Saielli, K. C. Nicolaou, Adrian Ortiz, Hongjun Zhang and Alessandro Bagno http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201108a/aop/images/medium/ja-2011-01108a_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja201108a http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/hTB3xm5f79k
nmrlearner Journal club 0 03-25-2011 08:21 PM
Rapid, Accurate and Simple Model to Predict NMR Chemical Shifts for Biological Molecu
Rapid, Accurate and Simple Model to Predict NMR Chemical Shifts for Biological Molecules. Rapid, Accurate and Simple Model to Predict NMR Chemical Shifts for Biological Molecules. J Phys Chem B. 2010 Nov 18; Authors: Atieh Z, Aubert-Fre?con M, Allouche AR We present a new model to predict chemical shifts for biological molecules. It is simple, fast, and involves a limited number of parameters. It is particularly adapted to be used in molecular dynamics studies with a molecular mechanic potential. We test the model for polyamines, which are rather...
nmrlearner Journal club 0 11-20-2010 06:01 PM
[NMR paper] 13C NMR chemical shifts can predict disulfide bond formation.
13C NMR chemical shifts can predict disulfide bond formation. Related Articles 13C NMR chemical shifts can predict disulfide bond formation. J Biomol NMR. 2000 Oct;18(2):165-71 Authors: Sharma D, Rajarathnam K The presence of disulfide bonds can be detected unambiguously only by X-ray crystallography, and otherwise must be inferred by chemical methods. In this study we demonstrate that 13C NMR chemical shifts are diagnostic of disulfide bond formation, and can discriminate between cysteine in the reduced (free) and oxidized (disulfide bonded)...
nmrlearner Journal club 0 11-19-2010 08:29 PM
Density functional calculations of 15N chemical shifts in solvated dipeptides
Density functional calculations of 15N chemical shifts in solvated dipeptides Ling Cai, David Fushman and Daniel S. Kosov Journal of Biomolecular NMR; 2008; 41(2) pp 77 - 88 Abstract: We performed density functional calculations to examine the effects of solvation, hydrogen bonding, backbone conformation, and the side chain on 15N chemical shielding in proteins. We used N-methylacetamide (NMA) and N-formyl-alanyl-X (with X being one of the 19 naturally occurring amino acids excluding proline) as model systems. In addition, calculations were performed for selected fragments from...
daniel Journal club 0 08-03-2008 03:46 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:22 AM.


Map