BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 02:27 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 17,589
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The serum albumin-binding domain of streptococcal protein G is a three-helical bundle

The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study.

Related Articles The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study.

FEBS Lett. 1996 Jan 8;378(2):190-4

Authors: Kraulis PJ, Jonasson P, Nygren PA, Uhlén M, Jendeberg L, Nilsson B, Kördel J

Streptococcal protein G (SPG) is a cell surface receptor protein with a multiple domain structure containing tandem repeats of serum albumin-binding domains (ABD) and immunoglobulin-binding domains (IgBD). In this paper, we have analysed the fold of ABD. Far-UV circular dichroism analysis of ABD indicates high helical content (56%). Based on an analysis of nuclear magnetic resonance 13C secondary chemical shifts, sequential and short-range NOEs, and a few key nuclear Overhauser effects, we conclude that the ABD is a three-helix bundle. The structure of the ABD is, thus, quite different from the IgBD of protein G [Gronenborn, A.M. et al. (1991) Science 253, 657-661]. This strongly suggests that the ABD and the IgBD of SPG have evolved independently from each other. However, the fold of ABD is similar to that of the IgBD of staphylococcal protein A, possibly indicating a common evolutionary ancestor, despite the lack of sequence homology.

PMID: 8549831 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
DEER in Biological Multispin-Systems: A Case Study on the Fatty Acid Binding to Human Serum Albumin
DEER in Biological Multispin-Systems: A Case Study on the Fatty Acid Binding to Human Serum Albumin Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 March 2011</br> Matthias J.N., Junk , Hans W., Spiess , Dariush, Hinderberger</br> In this study, self-assembled systems of human serum albumin (HSA) and spin-labeled fatty acids are characterized by double electron–electron resonance (DEER). HSA, being the most important transport protein of the human blood, is capable to host up to seven paramagnetic fatty acid...
nmrlearner Journal club 0 03-11-2011 05:00 PM
[NMR paper] Analysis of competitive binding of ligands to human serum albumin using NMR relaxatio
Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. Related Articles Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. J Pharm Biomed Anal. 2004 Feb 4;34(2):247-54 Authors: Cui YF, Bai GY, Li CG, Ye CH, Liu ML The competitive binding of two ligands, ibuprofen (IBP) and salicylic acid (SAL), to human serum albumin (HSA) was studied by using nuclear magnetic resonance (NMR) relaxation measurements. When the concentration of one ligand was...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiple
Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiplet relaxation study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Direct binding of ethanol to bovine serum albumin: a fluorescent and 13C NMR multiplet relaxation study. Biochemistry. 1996 Jan 9;35(1):340-7 Authors: Avdulov NA, Chochina SV, Daragan VA, Schroeder F, Mayo KH, Wood WG Molecular mechanisms of ethanol interaction with proteins are not well-understood. In the present study, direct...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] The binding of 5-fluorouracil to native and modified human serum albumin: UV, CD, and
The binding of 5-fluorouracil to native and modified human serum albumin: UV, CD, and 1H and 19F NMR investigation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The binding of 5-fluorouracil to native and modified human serum albumin: UV, CD, and 1H and 19F NMR investigation. J Pharm Biomed Anal. 1995 Aug;13(9):1087-93 Authors: Bertucci C, Ascoli G, Uccello-Barretta G, Di Bari L, Salvadori P 5-Fluorouracil (FU) is an important and widely used antineoplastic drug...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin.
13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. Related Articles 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. J Lipid Res. 1994 Mar;35(3):458-67 Authors: Kenyon MA, Hamilton JA Binding of the medium-chain fatty acids (MCFA), octanoic (OCT) and decanoic (DEC) acid, to human serum albumin (HSA) has been studied by 13C NMR spectroscopy. NMR spectra at 35 degrees C showed an apparently homogeneous binding environment (a single, narrow resonance for the 13C-enriched carboxyl...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin.
13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. Related Articles 13C NMR studies of the binding of medium-chain fatty acids to human serum albumin. J Lipid Res. 1994 Mar;35(3):458-67 Authors: Kenyon MA, Hamilton JA Binding of the medium-chain fatty acids (MCFA), octanoic (OCT) and decanoic (DEC) acid, to human serum albumin (HSA) has been studied by 13C NMR spectroscopy. NMR spectra at 35 degrees C showed an apparently homogeneous binding environment (a single, narrow resonance for the 13C-enriched carboxyl...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-
Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6478-82 Authors: Dubois BW, Cherian SF, Evers AS There is controversy as to the molecular nature of volatile anesthetic target sites. One proposal is that volatile anesthetics...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] 1.67-A X-ray structure of the B2 immunoglobulin-binding domain of streptococcal prote
1.67-A X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Related Articles 1.67-A X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Biochemistry. 1992 Nov 3;31(43):10449-57 Authors: Achari A, Hale SP, Howard AJ, Clore GM, Gronenborn AM, Hardman KD, Whitlow M The structure of the B2 immunoglobulin-binding domain of streptococcal protein G has been determined at 1.67-A...
nmrlearner Journal club 0 08-21-2010 11:45 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:13 AM.


Map