BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-23-2016, 12:55 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,617
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sequestration of Proteins by Fatty Acid Coacervates for Their Encapsulation within Vesicles

Sequestration of Proteins by Fatty Acid Coacervates for Their Encapsulation within Vesicles


Encapsulating biological materials in lipid vesicles is of interest for mimicking cells; however, except in some particular cases, such processes do not occur spontaneously. Herein, we developed a simple and robust method for encapsulating proteins in fatty acid vesicles in high yields. Fatty acid based, membrane-free coacervates spontaneously sequester proteins and can reversibly form membranous vesicles upon varying the pH value, the precrowding feature in coacervates allowing for protein encapsulation within vesicles. We then produced enzyme-enriched vesicles and show that enzymatic reactions can occur in these micrometric capsules. This work could be of interest in the field of synthetic biology for building microreactors.Vesicular microreactors: Fatty acid based, membrane-free coacervates spontaneously sequester proteins and can reversibly form membranous vesicles upon changing the pH value, which leads to protein encapsulation within the vesicles. These micrometric capsules also provide a suitable environment for enzymatic reactions.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Branched Fatty Acid Esters of Hydroxy Fatty AcidsAre Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase
Branched Fatty Acid Esters of Hydroxy Fatty AcidsAre Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00565/20160810/images/medium/bi-2016-005654_0006.gif Biochemistry DOI: 10.1021/acs.biochem.6b00565 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/5hcTbvGS4MY More...
nmrlearner Journal club 0 08-11-2016 06:27 AM
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins.
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. Biochemistry. 2011 Jan 12; Authors: He Y, Estephan R, Yang X, Vela A, Wang H, Bernard C, Stark RE Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to...
nmrlearner Journal club 0 01-14-2011 12:05 PM
[NMR paper] NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evi
NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evidence for conformational heterogeneity in the native state. Related Articles NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evidence for conformational heterogeneity in the native state. Biochemistry. 2005 Feb 22;44(7):2369-77 Authors: Li H, Frieden C (19)F-Nuclear magnetic resonance (NMR) studies have been carried out after incorporation of 4-(19)F-phenylalanine into the intestinal fatty acid binding protein (IFABP), a...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Fatty acid synthesis in Xylella fastidiosa: correlations between genome studies, 13C
Fatty acid synthesis in Xylella fastidiosa: correlations between genome studies, 13C NMR data, and molecular models. Related Articles Fatty acid synthesis in Xylella fastidiosa: correlations between genome studies, 13C NMR data, and molecular models. Biochem Biophys Res Commun. 2004 Oct 22;323(3):987-95 Authors: Osiro D, Muniz JR, Coleta Filho HD, de Sousa AA, Machado MA, Garratt RC, Colnago LA Xylella fastidiosa was the first plant pathogen to have its complete genome sequence elucidated. Routine database analyses suggested that two enzymes...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures
Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Related Articles Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog Lipid Res. 2004 May;43(3):177-99 Authors: Hamilton JA The interactions of fatty acids with proteins have been studied by a variety of conventional approaches for decades. However, only limited aspects of fatty acid-protein interactions have been elucidated, even with the integration of information gleaned from the many techniques....
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR assignment and structural characterization of the fatty acid binding protein from
NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria. Related Articles NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria. J Biomol NMR. 2003 Apr;25(4):355-6 Authors: Lücke C, Kizilbash N, van Moerkerk HT, Veerkamp JH, Hamilton JA
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C
Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study. Related Articles Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study. Biochemistry. 2001 Oct 23;40(42):12604-11 Authors: Beringhelli T, Goldoni L, Capaldi S, Bossi A, Perduca M, Monaco HL Two different groups of liver fatty acid-binding proteins (L-FABPs) are known: the mammalian type and the basic type. Very few members of this second group of L-FABPs have been...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] 13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty ac
13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty acid-binding proteins produced in the intestinal epithelium. Related Articles 13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty acid-binding proteins produced in the intestinal epithelium. Mol Cell Biochem. 1990 Oct 15-Nov 8;98(1-2):101-10 Authors: Cistola DP, Sacchettini JC, Gordon JI A high-resolution, solution-state NMR method for characterizing and comparing the interactions between carboxyl 13C-enriched fatty acids (FA) and...
nmrlearner Journal club 0 08-21-2010 11:04 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:11 AM.


Map