BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-18-2016, 05:04 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

Abstract

Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca2+-dependent membrane fusion. Methyl TROSY NMR experiments provide a powerful tool to study complexes between these proteins, but assignment of the methyl groups of the SNARE complex is hindered by its limited solubility. Here we report the assignment of the isoleucine, leucine, methionine and valine methyl groups of the four SNARE motifs of syntaxin-1, SNAP-25 and synaptobrevin within the SNARE complex based solely on measurements of lanthanide-induced pseudocontact shifts. Our results illustrate the power of this approach to assign protein resonances without the need of triple resonance experiments and provide an invaluable tool for future structural studies of how the SNARE complex binds to other components of the release machinery.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins
An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins Abstract Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded...
nmrlearner Journal club 0 01-04-2016 07:49 PM
Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags
Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags Abstract Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Î?Ď?) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative...
nmrlearner Journal club 0 11-23-2015 06:58 PM
[NMR paper] CH3-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample.
CH3-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample. Related Articles CH3-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample. J Biomol NMR. 2015 Nov 13; Authors: Kerfah R, Hamelin O, Boisbouvier J, Marion D Abstract A new strategy for the NMR assignment of aliphatic side-chains in large perdeuterated proteins is proposed. It involves an alternative isotopic...
nmrlearner Journal club 0 11-15-2015 07:55 PM
CH 3 -specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample
CH 3 -specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample Abstract A new strategy for the NMR assignment of aliphatic side-chains in large perdeuterated proteins is proposed. It involves an alternative isotopic labeling protocol, the use of an out-and-back 13Câ??13C TOCSY experiment ((H)C-TOCSY-C-TOCSY-(C)H) and an optimized non-uniform sampling protocol. It has long been known that the non-linearity of an aliphatic spin-system (for example Ile, Val, or Leu)...
nmrlearner Journal club 0 11-14-2015 03:37 PM
Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization
From The DNP-NMR Blog: Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization Meier, B., et al., Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization. J Am Chem Soc, 2013. 135(50): p. 18746-9. http://www.ncbi.nlm.nih.gov/pubmed/24252212
nmrlearner News from NMR blogs 0 02-13-2014 01:42 AM
[NMR paper] Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins.
Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. J Biomol NMR. 2013 Sep 28; Authors: Mas G, Crublet E, Hamelin O, Gans P, Boisbouvier J Abstract The specific protonation of valine and leucine methyl...
nmrlearner Journal club 0 10-01-2013 11:15 PM
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy Abstract Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic...
nmrlearner Journal club 0 09-26-2011 06:42 AM
A DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra.
A DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. A DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. Bioconjug Chem. 2011 Aug 31; Authors: Graham B, Loh CT, Swarbrick JD, Ung P, Shin J, Yagi H, Jia X, Chhabra S, Barlow N, Pintacuda G, Huber T, Otting G Abstract Structural studies of proteins and protein-ligand complexes by nuclear magnetic resonance (NMR) spectroscopy can be greatly enhanced by site-specific attachment of lanthanide ions to...
nmrlearner Journal club 0 09-01-2011 05:20 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:36 PM.


Map