BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-18-2016, 09:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 22,537
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Selective Interaction of Dopamine with the Self-Assembled Fibrillar Network of a Molecular Hydrogel Revealed by STD-NMR.

Selective Interaction of Dopamine with the Self-Assembled Fibrillar Network of a Molecular Hydrogel Revealed by STD-NMR.

Related Articles Selective Interaction of Dopamine with the Self-Assembled Fibrillar Network of a Molecular Hydrogel Revealed by STD-NMR.

Chemistry. 2015 Sep 28;21(40):13925-9

Authors: Segarra-Maset MD, Escuder B, Miravet JF

Abstract
A molecular hydrogel formed by a derivative of L-valine with pendant isonicotinoyl moieties interacts selectively with protonated dopamine in the presence of related compounds such as 3-methylcatechol, and protonated or neutral phenethylamine. A two-point interaction with the gel fibers is postulated to explain the results. The conclusions are obtained from nuclear magnetic resonance saturation transfer experiments (STD-NMR), illustrating how this technique is perfectly suited to monitor the interaction of substrates with the fibrillar network of a molecular gel.


PMID: 26289821 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Protein interaction patterns in different cellular environments are revealed by in-cell NMR.
Protein interaction patterns in different cellular environments are revealed by in-cell NMR. Related Articles Protein interaction patterns in different cellular environments are revealed by in-cell NMR. Sci Rep. 2015;5:14456 Authors: Barbieri L, Luchinat E, Banci L Abstract In-cell NMR allows obtaining atomic-level information on biological macromolecules in their physiological environment. Soluble proteins may interact with the cellular environment in different ways: either specifically, with their functional partners, or...
nmrlearner Journal club 0 09-26-2015 05:13 AM
[NMR paper] Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR.
Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun. 2015;6:8202 Authors: Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY, Sun JP Abstract Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many...
nmrlearner Journal club 0 09-09-2015 11:49 AM
[NMR paper] Solution NMR structures of immunoglobulin-like domains 7 and 12 from obscurin-like protein 1 contribute to the structural coverage of the human cancer protein interaction network.
Solution NMR structures of immunoglobulin-like domains 7 and 12 from obscurin-like protein 1 contribute to the structural coverage of the human cancer protein interaction network. Related Articles Solution NMR structures of immunoglobulin-like domains 7 and 12 from obscurin-like protein 1 contribute to the structural coverage of the human cancer protein interaction network. J Struct Funct Genomics. 2014 Jul 3; Authors: Pulavarti SV, Huang YJ, Pederson K, Acton TB, Xiao R, Everett JK, Prestegard JH, Montelione GT, Szyperski T Abstract ...
nmrlearner Journal club 0 07-06-2014 08:28 PM
[NMR paper] Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network.
Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network. Related Articles Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network. J Struct Funct Genomics. 2014 Jun 19; Authors: Xu X, Pulavarti SV, Eletsky A, Huang YJ, Acton TB, Xiao R, Everett JK, Montelione GT, Szyperski T Abstract High-quality...
nmrlearner Journal club 0 06-20-2014 08:14 PM
Long-lived spin state of a tripeptide in stretched hydrogel
Long-lived spin state of a tripeptide in stretched hydrogel Abstract The longitudinal (T 1), transverse (T 2), and singlet state (T s) relaxation times of the geminal backbone protons (CH2) of l-Leu-Gly-Gly were studied by NMR spectroscopy at 9.4 T in a bovine hide gelatin gel composed in D2O at 25*°C. Gelatin granules were dissolved in a hot solution of the tripeptide and then the solution was allowed to gel inside a flexible silicone tubing. With increases in gelatin content, the T...
nmrlearner Journal club 0 06-19-2014 10:21 PM
[NMR paper] A molecular dynamics simulations-based interpretation of NMR multidimensional heteronuclear spectra of alpha-synuclein/dopamine adducts.
A molecular dynamics simulations-based interpretation of NMR multidimensional heteronuclear spectra of alpha-synuclein/dopamine adducts. Related Articles A molecular dynamics simulations-based interpretation of NMR multidimensional heteronuclear spectra of alpha-synuclein/dopamine adducts. Biochemistry. 2013 Aug 21; Authors: Dibenedetto D, Rossetti G, Caliandro R, Carloni P Abstract Multidimensional heteronuclear NMR spectroscopy provides valuable structural information on adducts between naturally unfolded proteins and their ligands....
nmrlearner Journal club 0 08-24-2013 04:53 PM
[NMR paper] Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of Phospholipase D1 revealed by NMR spectroscopy.
Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of Phospholipase D1 revealed by NMR spectroscopy. Related Articles Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of Phospholipase D1 revealed by NMR spectroscopy. Biochim Biophys Acta. 2013 Apr 19; Authors: Farina B, Doti N, Pirone L, Malgieri G, Pedone EM, Ruvo M, Fattorusso R Abstract PED/PEA15 is a small protein involved in many protein-protein interactions that modulates the function of a number of key cellular effectors involved in...
nmrlearner Journal club 0 04-24-2013 09:48 PM
[NMR paper] NMR solution structure of Mob1, a mitotic exit network protein and its interaction wi
NMR solution structure of Mob1, a mitotic exit network protein and its interaction with an NDR kinase peptide. Related Articles NMR solution structure of Mob1, a mitotic exit network protein and its interaction with an NDR kinase peptide. J Mol Biol. 2004 Mar 12;337(1):167-82 Authors: Ponchon L, Dumas C, Kajava AV, Fesquet D, Padilla A Proteins of the Mob1/phocein family are found in all eukaryotic cells. In yeast, they are activating subunits of Dbf2-related protein kinases involved in cell cycle control. Despite the wide occurrence of these...
nmrlearner Journal club 0 11-24-2010 09:25 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:21 AM.


Map